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Abstract—Streaming live video over the Internet presents great
challenges due to its sheer bandwidth requirements. Client/Server
model suffers from scalability issues and high deployment cost
to provide this service. Peer-to-Peer (P2P) approach provides an
excellent alternative due to its potential scalability and ease of
deployment. Nonetheless, a major limitation of P2P approach
lies in its high dependency on users. Since peers relay content,
which themselves are controlled by users, the behavior of the
latter has a major impact on the streaming quality perceived
by users. Indeed, unlike dedicated servers, peers join the system
intermittently, which poses great challenges in providing QoS
for operated live streaming services. In this paper, we propose
an autonomous topology management framework for P2P live
streaming architectures that minimizes the impact of peers’
frequent departures. It consists in a stabilization strategy for
push-based systems that moves unstable peers towards the
outskirts of the topology. To validate our approach, we performed
experiments on PlanetLab and show here the significant improve-
ment of our contribution as compared to an existing system in
terms of the global service quality.

I. INTRODUCTION

Multimedia streaming over the Internet has attracted im-

mense interest from both academia and industry. Numerous

live video streaming solutions [1] have been proposed and

several practical systems [2] have been deployed which attract

users in large numbers. Due to the limited deployment of

IP multicast as well as the cost and scalability issues of

content delivery networks, P2P approach provides an efficient

alternative. Instead of requiring routers to enable multicast or

centralized servers, it relies on end-hosts called peers to relay

content to other peers. This approach allows a quick and easy

deployment and provides scalability.

Based on their content diffusion strategies, P2P streaming

systems can be categorized into three major types: push-based,

pull-based and hybrid. Push-based approaches [3], [4] organize

end-hosts into well-defined parent children relationships where

a child peer always receives the content from its parent peer.

A parent peer pushes the content to its child peers as it

receives it. Pull-based systems [5], [6] allow peers to establish

connections with several other peers and pull the content

from them through explicit requests for certain blocks of data.

Peers advertise their buffer maps to let others know about

the content they can provide. Finally, hybrid systems [7], [8]

incorporate both the pull and push approaches together. In

normal operation, the content is usually pushed while the

missing content is pulled from other peers.

P2P approach for streaming applications faces its own

challenges. The independent arrivals and departures of peers,

called churn, turn the network topology highly dynamic.

Management of such a network is not trivial: it explains the

current barrier toward the deployment of P2P architectures in

the context of SLA compliant services operated by a dedicated

provider. The problem becomes further severe for live video

streaming service since live content has stringent playback

deadlines. Churn degrades the Quality-of-Service (QoS) re-

sulting in video playback freezes and skips. Consequently, the

users’ Quality-of-Experience (QoE) is impacted.

Since each peer is controlled by a user, the behavior of the

latter has a direct impact on the performance of the system.

Systems incorporating a pure push strategy over a tree-based

P2P network suffer the most from user behavior. The sudden

departure of an upstream peer in such a network disrupts the

video stream to all its descendant peers. On the other hand,

systems with pull-based strategy attempt to mitigate the impact

of user behavior through pulling content from several peers at

the same time and using large buffers. They achieve streaming

continuity at the cost of longer startup and playback delays.

In the hybrid approach too, the departure of a pushing peer

forces all its downstream peers to operate completely in pull

mode, thus inheriting the QoS issues of pull-based approach.

To overcome these problems, user behavior needs to be

considered directly in P2P topology management. Construct-

ing user-aware streaming topologies can minimize the impact

of user behavior. In this paper, we propose an adaptive con-

trol mechanism aimed at the stabilization of tree-based push

systems that periodically moves the unstable peers towards

the outskirts of the tree. This mechanism uses estimations of

formerly proposed user behavior models to carry out control
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decisions. Experiments over PlanetLab show that our approach

improves significantly the performance of an existing system.

The rest of this paper is organized as follows. Section II

mentions works related to the integration of user behavior in

P2P topology control mechanisms as well as previous work

we proposed in this area and on which the contribution of this

paper relies. Section III describes our autonomous topology

management strategy through novel algorithms. Section IV

presents the results of experiments we performed over Planet-

Lab that rely on an implementation prototype we developed.

The latter shows the validity of our topology management

proposal while also providing a comparative analysis of peers’

stability estimation strategies. Finally, section V presents con-

clusions and future research perspectives.

II. RELATED WORK

A major part of the research activities over user behavior

in multimedia streaming applications is dedicated to measure-

ment studies [9]. These measurements get insights into user

behavior through analyzing logs and traces, collected by the

service provider or by using crawlers and passive monitoring

techniques. Analysis results provide foundations for modeling

user behavior that enable to adapt P2P live streaming systems

for improved streaming quality and better QoE.

Based on the insights from measurements, a few other works

propose user behavior models. An overview of these works is

given below.

A. User behavior models

Tang et al. [10] analyze the stability of peers through

measurements and observe that users with longer elapsed

time in a session tend to stay longer for the remaining part

of that session. Based on this information, they propose a

neighbor selection strategy to improve the streaming quality.

This approach prefers to choose a long-lived peer as an

upstream peer. Wang et al. [11], [7] use a similar approach

to identify stable peers for putting them in the backbone of

the topology. Nevertheless, a downside of such an approach is

that it tends to consider all recently arrived peers as unstable

ones, which is not always the case.

Horovitz et al. [12] propose an SVM (Support Vector

Machine) model that enables peers to actively detect the load

in the uplink of source peers and alert their clients to replace

their source. This approach only considers the bandwidth

dynamics and does not take into account other metrics such as

stability and streaming quality. Liu et al. [13] consider peers’

resilience to minimize service disruption in P2P streaming

systems. The resilience is determined with the help of peer’s

age. This approach too ignores other well-known influential

factors such as time-of-day, type and popularity of the content.

Zheng et al. [14] argue that node churn is increased with

degradation in service quality. They propose a peer selection

strategy at short time scales, that takes into account content

availability to balance at the same time connection efficiency

and stability requirements. This work establishes a correlation

between service quality and node churn but does not focus on

an accurate estimation of the latter.

Liu et al. [15] take a step further and they analyze through

measurements that stability and bandwidth contribution of

users are influenced by several factors. For instance, they ob-

serve that a user experiencing a good initial streaming quality

while watching a popular channel stays longer. They propose

models to estimate the stability and bandwidth contribution of

peers. However, these models do not consider all the impacting

factors observed by other measurements, such as the impact of

elapsed time on stability. Moreover, they do not integrate these

models in real systems to evaluate the possible performance

improvement.

B. Previous work

Previously, we proposed a non-contextual approach and a

contextual one to model user behavior. We briefly discuss them

here.

1) Non-contextual approach: The non-contextual approach

[16] only considers the historic sessions of peers to estimate

their stability through exponential moving average and the

Bayes rule. We also proposed the first elements of a basic

receiver-driver stabilization strategy that, by using estimations

of these models, enables to move a stream receiving peer to

a stable source before the estimated departure of its current

stream provider. A limitation of this strategy is that it does not

push the unstable peers away from the streaming source and

hence, unstable peers might stay near to the source making it

difficult for other peers to find stable providers. Moreover, the

sole dependency over the sessions’ history might not be able

to produce accurate results since users have different interests

and viewing habits [17].

2) Contextual approach: The contextual approach [18]

presents a Bayesian network model that considers all the

known variables involved in the user behavior. These variables

have been extracted from user behavior measurements through

an exhaustive synthesis. A Bayesian network model is derived

from these relationships as shown in Figure 1. Nodes of this

model represent variables and directed arcs show their depen-

dency relationships. The model is a mixed one, containing

both discrete and continuous variables. Discrete variable are

shown through rectangles and continuous ones are depicted

through ellipses.

Discrete variables include time-of-day, content type and

elapsed time. Time-of-day represents the joining time of a

user. This variables has been discretized into 24 states, having

one for each hour. The number of states have been chosen

through simulations. Content type has three states, namely,

reality, fiction and sports. Reality consists of news, talk shows

and music, and fiction includes movies, documentaries and

serials. Elapsed time has two states. One for channel holding

time up to 2 minutes and another for all other values of elapsed

time. The former favors surfing mode and the latter favors

viewing mode. To estimate the value of any of these variables,

the state with the highest probability is taken as its estimated

value.
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Fig. 1. Bayesian network model of user behavior

Arrival rate, departure rate, popularity, session duration,

streaming quality, delay and bandwidth contribution of a peer

are continuous variables. All of these variables are Gaussian

distributed. The mean value of a continuous variable is taken

as its estimated value at a given time.

Since Bayesian networks allow multi-way inference, this

model enables to estimate the value of any required variable

at a given time. Parameters of the model are learned from data,

which encode the strength of dependencies among variables.

Nevertheless, it takes long to get properly trained which

emerges as a limit. To overcome this problem, a classification

mechanism can be coupled with the Bayesian network model.

To do so, a Bayesian network can be trained for a class of

users and on an arrival of each user, a classifier first classifies

it. For estimations, the appropriate trained Bayesian network

is assigned to that user. A classifier model is out of the scope

of this paper, therefore we do not discuss it in further detail.

III. A USER-AWARE TOPOLOGY MANAGEMENT

FRAMEWORK

Managing a P2P system for performance purposes could

be achieved in several ways but since these systems build

an adhoc overlay topology, controlling it appears as one of

the most straight-forward and efficient management strategy.

Following this statement, our approach consists in an adaptive

topology control mechanism that aims at improving the service

quality of P2P live streaming systems. It relies on the estima-

tions of user behavior models to maintain a stable topology.

A user behavior model can estimate several behavior metrics

but in our work we only use their estimations of current

session duration. The online remaining time of a peer shows

the stability which can be determined from the length of its

current session and its joining time.

A. Design considerations

Making use of stability estimations for performance im-

provement depends on the underlying system. Primarily, tree-

based push systems and hybrid push-pull systems can be

benefited the most from these estimations. Tree-based systems

are efficient in terms of timely stream delivery but they

are vulnerable to stream disruptions due to the departure

of peers placed at high level of the tree. These systems

can be indeed made practical through building stable tree

structures. Similarly, hybrid systems can use these estimations

during subscription to receive stream through push strategy.

Subscription to stable peers will increase the amount of stream

received through push operations which ultimately improves

the performance.

In this paper, we focus on the stabilization of tree-based

systems which is the most challenging one. Our goal is to

achieve a stable tree with the following considerations:

• The approach should be decentralized, since video

streaming attracts a large number of users that can lead

to scalability issues if managed in a centralized way;

• The overhead involved in the process should remain

minimum;

• The approach should not impact other performance pa-

rameters negatively such as the increase of startup and

playback delay or the lowering of the streaming through-

put.

Besides these criteria, we do the hypothesis that peers

cooperate in providing their stability information to each other

in order to self-organize the topology. Security concerns of

such an approach are out of the scope of this paper (e.g. a

malicious peer that changes his session time estimation to bias

the topology control algorithm).

A stable tree can be achieved at two stages. Firstly, at

the joining stage of a peer by choosing a stable content

provider. Secondly, by continuously monitoring the structure

and performing stabilization after joining. Both stages can also

be considered together. However, in the first case, choosing a

stable provider peer at the joining time requires probing several

other peers which can delay the actual stream delivery. This

can potentially increase the startup delay which is not desirable

and gives rise to early departures of users. Therefore, we do

not consider choosing a stable provider node at the joining

time since it will contradict our third criterion.

On the other hand, the stabilization of the overlay can be

accomplished in several ways after new peers have joined

it. For example, peers can exchange stability information

periodically and promote stable peers at higher levels of

the tree. Indeed, it requires continuous messages exchanges

leading to a high overhead on the system. A receiver-driven

strategy avoids this through enabling the stream receiving peer

to change to a new stream provider peer before the departure

of its current provider. However, a limitation of this approach

is that it does not push unstable peers away from the source

which limits the options of other peers to find stable stream

providers forcing them to remain connected to unstable ones.

Therefore, we propose a novel strategy in which the unstable

provider peers move themselves to the outskirts of the tree,

hence allowing stable peers to stay near to the source. It

ensures a stable tree which is resilient to peers’ departures with

low overhead involved. We discuss this approach in detail.



B. Maintaining a stable tree

We propose a cooperative strategy that ensures the building

and maintenance of a stable tree. As mentioned earlier, this

approach does not modify a peer’s joining mechanism speci-

fied in the system. After joining, each peer records its joining

time and estimates its current session duration. It schedules

a swap with a child peer to be carried out at the end of the

current estimated session. The child is chosen at the time of

swap. The goal of the swap is to choose the most stable peer

among the child peers and swap its own position with it. This

process is detailed in two algorithms and we explain them

through the help of Figure 2. The algorithms are formalized

with a pseudo-code syntax. Moreover, we assume that each

node provides (1) basic functionalities that enable the retrieval

of the node’s parent and its child peers and (2) protocol

primitives to send and receive topology control messages. Such

an API is depicted in Algorithm 1. Finally, each message

exchanged between peers is composed of dedicated fields that

we represent through a dot separator.
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Fig. 2. Unloading a departing peer

Algorithm 1 Basic operations of a node

1: void: JOIN

2: Node: GETPARENT

3: List{Node}: GETCHILDREN

4: void: SEND(Message, Node)

5: Message: RECEIVE(Node)

1) Selecting stable nodes: Algorithm 2 is run by a peer as

its estimated session duration is going to expire. We assume

peer B as a departing peer in Figure 2. In the first step, B

queries its child peers (if any, otherwise peer is already at the

leaf) for their estimated remaining time in the session. Each

child peer estimates its remaining time in the current session

from its estimated current session duration and joining time

and provides this information to its departing parent. All this

process is shown in statements 2 to 10.

Algorithm 2 Choosing a stable child for replacement

Declaration:

LRT : Integer ⊲ Longest Remaining Time

child, SC: Node ⊲ Child Identifier

RT : Integer ⊲ Remaining Time

CT : Integer ⊲ Current Time

RTQM : Message ⊲ Remaining Time Query

RTRM : Message ⊲ Remaining Time Response

CQM : Message ⊲ Child Query

CRM : Message ⊲ Child Response

CPL: List{Node} ⊲ Child Peers

RTRL: List{RTRM} ⊲ Remaining Time Responses

PPL: List{Node} ⊲ Potential Parents

1: function STABLENODESELECTION

2: CPL← GETCHILDREN

3: for i← 1, CPL.size() do

4: child← CPL.get(i)
5: SEND(RTQM, child)

6: end for

7: while RTRL.size() < CPL.size() do

8: RTRM ← RECEIVE(any)

9: RTRL.add(RTRM)
10: end while

11: LRT ← 0
12: for i← 1 : RTRL.size() do

13: RTRM ← RTRL.get(i)
14: RT ← RTRM.RT

15: if RT > LRT then

16: LRT ← RT

17: SC ← RTRM.source

18: end if

19: PPL.add(SC)
20: end for

21: SEND(CQM,SC)

22: CRM ← RECEIVE(SC)

23: PPL.add(CRM.grandChildren)
24: return PPL

25: end function

In the next step, the departing parent analyzes each response

and chooses the child with the longest remaining time as a

stable one to replace it. This process is given in statements 11

to 20. In our case, we suppose this peer is E. For B to proceed

a swap with E, A can directly replace B by E, since it does

not require extra resources from A. However, for B becoming a

child of E is not straightforward. E may have already filled its

outgoing capacity and in this case it will be unable to accept

B as a child peer and hence a swap would not be possible.

Moreover, the other child peers of B, namely C and D, should

not ideally remain connected to B since it is no more stable.



Therefore, B requires a list of potential parents for itself and

its other children.

To get that list, B sends a request to its stable child E for its

children. E responds with the list including F and G. Finally,

B prepares a list of potential parents including E, F and G.

This process is shown in lines 21 to 24. After having the list

of potential parents, peer B is now ready to be replaced by E.

We describe this process in Algorithm 3.

Algorithm 3 Processing the swap

Declaration:

accepted: Boolean ⊲ Child acceptance

parent: Node ⊲ The parent Node

RRM : Message ⊲ Replacement Request

RAM : Message ⊲ Replacement Acknowledgement

MM : Message ⊲ Move Message (to inform a child

move to another parent)

JM : Message ⊲ Join Message (to subscribe to a parent)

JAM : Message ⊲ Join Acknowledgement

1: procedure NODESWAP(PPL: List{Node}, SC: Node)

2: CPL← GETCHILDREN

3: for i← 1, CPL.size() do

4: MM.PPL← PPL

5: child← CPL.get(i)
6: SEND(MM, child)

7: end for

8: parent← GETPARENT

9: SEND(RRM, parent)

10: RAM ← RECEIVE(SC)

11: CPL.remove(RAM.source)
12: if SAM.status = false then

13: accepted← false

14: PPL.remove(RAM.source)
15: for i← 1, PPL.size() do

16: PP ← PPL.get(i)
17: SEND(JM,PP )

18: JAM ← RECEIVE(PP )

19: if JAM.status = true then

20: parent← JAM.source

21: accepted← true

22: end if

23: end for

24: if accepted = false then

25: JOIN

26: end if

27: else

28: parent← RAM.source

29: end if

30: end procedure

2) Processing the replacement: In the first step, the depart-

ing peer (B) informs its remaining child peers (C and D) to

choose a new parent among the potential parents as shown in

lines 2 to 7. Each child node iteratively requests the potential

parent to join, unless one of them accepts it as a child. If the

list is exhausted and none of the potential parents accepts a

child, then it performs a random rejoin. A peer should accept

a child if it has the available capacity. These steps are shown

in Figure 2 (2a, 2b, 3a and 3b). Then, it sends a replacement

request to its parent A (line 9), asking to replace it by peer

E. Parent A replaces child B by E and informs E that it has

replaced peer B. Peer E updates its parent and checks if it can

add B as a child. If it has the available capacity to add a new

child, it adds B as a child, otherwise it does not add B. In both

cases, it sends an acknowledgement message to B. These two

cases are shown in Figure 2.4a and Figure 2.4b respectively.

After receiving the replacement acknowledgement response

from E, B removes E from its children list as shown in lines

10 and 11. It then checks whether it is accepted as a child or

not by E. In the former case, it just adds its previous child

as a parent. In the latter case, first it removes this peer (E)

from the potential parents list and then it iteratively requests

each peer of this list, unless one of them accepts it as a child.

In case of failure, it performs a new join. All this process is

given in lines 12 to 29. In both these cases, one can notice that

peer B has no child peer now (Figure 2.4a and Figure 2.4b)

and if it departs, it will not disrupt the stream to other peers,

consequently improving the quality of streaming.

IV. EXPERIMENTAL EVALUATION

In order to evaluate the cost and benefits of our user-

aware topology management strategy and show under which

conditions it enables the improvement of the perceived Quality

of Service, we performed wide-area experiments over Plan-

etLab [19] through a Java-based prototype implementation.

PlanetLab1 is a globally distributed testbed for networking

and distributed systems’ research that provides a realistic

environment for the evaluation of Internet-scale applications.

The objectives of our evaluation are twofold. They mainly

consist in validating the proposal of this paper, but also enables

us to compare different strategies that can be considered to

estimate the session duration of a user which is crucial for the

efficiency of any subsequent control mechanism. We discuss

them in the following of this section.

A. Experimental framework

Our prototype implementation relies on the FreePastry2

open source implementation of Scribe [20]. We choose this

system for the assessment of our approaches, because while

being the most efficient stream delivery approach, its single

tree structure presents serious challenges towards the provision

of QoS-enabled live streaming services. Moreover, its open

source availability enables us to integrate our approach into it.

We add a five seconds smoothing buffer to Scribe and ana-

lyze its performance over PlanetLab. We use 60 nodes, and if

the online population of users exceeds this number, we launch

more than one peer on a same PlanetLab node, uniformly

distributed over all nodes in the slice. To deploy, execute

and monitor our application, we use PlanetLab Experiment

1www.planet-lab.org
2http://www.freepastry.org/
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Fig. 3. (a) Peers’ population; (b) Missed packets during a 10 minutes slot; (c) Cumulative missed packets

Manager (PIMan3). Dummy packets with a bit rate of 64 Kbps

are broadcasted over the tree. The streaming source is fixed

throughout each experiment, behaving as a server instead of

a peer controlled by a user. Other peers remain online during

their specified life times in the traces. The out-degree of each

peer is limited to three.

In total, we perform four distinct experiments, one Without

Swap (WS) in which we use Scribe in its original form. Sec-

ond, we use the stabilization strategy based on the estimations

of our Bayesian network (denoted as BN) model coupled with

a classifier. For the remaining two experiments we utilize

the estimations of two non-contextual models presented in

section II-B. We shortly denote them by EMA (Exponential

Moving Average) and BR (Bayes’ Rule) respectively. These

experiments enable us to compare the performance gain of

our stabilization strategy over the existing system according

to different session duration estimation strategies.

We choose to replay the two hours traces generated through

a semi-Markovian model [21]. Starting from the first minute,

a peer is entered into the system each time its joining time

corresponds to the current one. It remains online for a period

equal to its actual session duration, while its estimated session

duration through one of the three estimators is used by the

stabilization strategy.

B. Results analysis

Throughout each experiment, we measure missed packets,

initial streaming quality, buffering delay, average delay, played

packets and the number of control messages added by the

stabilization strategy. These latter are to measure the overhead

involved due to our strategy. All other elements are important

QoS metrics which impact users’ QoE. The ratio of missed

packets is an important metric in these experiments since pure

push-based systems are efficient in terms of other metrics such

as buffering and playback delays. We include the analysis of

these latter metrics to investigate if an improvement in packet

losses negatively impact other performance parameters, which

is the case in pure pull-based systems.

Before discussing these results, we plot the online number

of users during each experiment in Figure 3.a. These plots

3http://www.cs.washington.edu/research/networking/cplane/

clearly show that all experiments are performed in similar

conditions, since all the curves present similar shapes. Small

variations occur due to the underlying unstable platform,

which may lead to peers’ failures. It might be the case even on

an actually deployed P2P streaming system over the Internet.

1) Missed Packets: Missed packets are those which do not

meet the playback deadline. At startup each peer waits for

its buffer to be filled and then starts picking packets at the

source’s transmission rate. The playing position is initialized

at the first packet a peer receives. In the meanwhile, a packet

not present in the buffer is counted as a missed one. This

metric indicates the video playback quality experienced by a

user.

Figure 3.b depicts the ratio of missed packets to played ones,

averaged over each 10 minutes period during all experiments.

One can notice that Scribe without swap (WS) misses a

larger number of packets than other approaches at most of the

instances. By contrast, BN shows the least packet losses. To

further elaborate these results, we also depict the cumulative

packet losses in Figure 3.c. From these results, it is obvious

that BN outperforms other approaches in terms of packet loss.

Overall, BN reduces the packet loss of Scribe without swap

by 89%, EMA by 38% and BR by 30%. This is a significant

improvement over the existing system, showing the efficacy

of swap and user behavior estimators, especially BN.

Another interesting aspect is the sudden increase in the

number of missed packets around 45 minutes time. It means

that once the long lived peers start departing, they impact

the system more severely, since they most probably occupy

higher positions in the tree. It also contradicts the older stable

principle used in a few approaches such as [11], [7], [10].

2) Control overhead: The overhead of our swap mechanism

lies in the number of messages sent by all peers to stabilize

the tree. We measure the number of control messages added

by the stabilization strategy. The total number of messages

sent by all peers grouped by 10 minutes period are shown in

Figure 4.a. Similarly, Figure 4.b depicts the cumulative control

messages during each experiment.

BN appears to incur a larger overhead among the others but

the amount of this overhead is negligible considering the num-

ber of messages peers exchange for the overlay management.
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Fig. 4. (a) Control messages over a 10 minutes slot, (b) Cumulative control messages, (c) Packets meeting the playback deadline

For instance, an average of 14.4 messages per minute have

been sent by all peers present in the system, which represent

a very small overhead.
3) Playback delay: Playback delay is the time elapsed from

the creation of a packet until it is picked by the player. Here,

we remind that a five seconds buffer is used to smooth the

playback, therefore a minimum of 5 seconds delay becomes

inevitable.
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Fig. 5. Comparison of average playback delay (in seconds)

Average playback delays of each approach are depicted in

Figure 5 with their 95% confidence intervals. Since pure push-

based systems are efficient in timely delivery of content, one

can notice that in all approaches mostly the average delay

remains lower than 15 seconds. However, comparing these

approaches indicate that delays with BN are slightly longer

than with other approaches in the second hour.

To explain, this we plot the total number of packets that

met the playback deadline at each peer during one minute

time in Figure 4.c. It is noticeable that with BN, consistently

a larger number of packets were received in time during the

second hour. However, due to churn, delays were increased.

By contrast, other approaches simply missed those packets.

Therefore, we conclude that BN does not increase delays

considerably, while reducing packet losses.

4) Initial streaming quality: Liu et al. [15] measure the

initial streaming quality from the initial buffer level. We use

the same metric in our experiments. The buffer level of each

peer is checked after five seconds time since joining. Figure 6

depicts a scatter plot of initial streaming quality of all peers.
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Fig. 6. Initial streaming quality in terms of buffer level

At a first look, all approaches seem to produce similar

results once again due to the push strategy of the system.

However, a detailed analysis shows that BN achieves better

streaming quality than all other approaches. For instance, we

estimate the ratio of peers with initial buffer level of 90%
or more to the total number of peers. We find that with

BN, 84.7% of peers achieve this level, which is the highest

among all. Concerning other approaches, Scribe without swap

achieves this level for 58.8%, EMA for 65% and BR for 66%
of peers. It shows that a stable overlay not only reduces packet

losses but also improves the initial streaming quality.

5) Buffering delay: Finally, we measure the time period

required by each peer to fill its buffer after joining. This

estimate is important for the quality of streaming perceived

by a user since a user has to wait during buffering before the

playback starts. We show a scatter plot of buffering delays of

all approaches in Figure 7.

Here, again with BN, delays remain lower in most of the
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Fig. 7. Buffering delay

cases. As an example, we analyze the cases in which buffering

delays remaind under six seconds. BN fulfills this condition in

about 90% of cases. Scribe without swap achieves the same for

69%, EMA for 71% and BR for 79% of peers, emerging BN

as a clear winner. Once again, this shows the positive impact

of stabilization over the quality of streaming.

In our wide-area experimentations, we analyzed the perfor-

mance gain of our strategy. We evaluated the effectiveness of

our swap strategy over a contextual and two non-contextual

estimators. We measured the stream disruption that occurs

due to the departure of stream provider peers. We noticed

that our strategy with contextual model (BN) reduces the

impact of departures significantly. Moreover, it induces an

acceptable overhead. On the other hand, this approach does

not impact QoS and users’ QoE parameters negatively. All

these results validate the concept of user behavior integration

in P2P streaming systems for quality improvement.

V. CONCLUSION AND FUTURE WORK

P2P systems highly depend on the behavior of end-users

and their integration in control and management algorithms is

a crucial step toward the design of systems able to deal with

SLA and that can be deployed in legally operated contexts.

In this paper, we focused on the integration of user behavior

models in P2P live streaming systems in order to adapt them

for improved streaming quality. More precisely, in the context

of push-based systems, we presented an autonomous topology

management strategy that constantly moves unstable nodes

towards the leaves of the tree, reducing the impact of their

departures. We evaluated the performance gain of this strategy

relying on the estimations of a Bayesian network coupled

with a classifier and two non-contextual models. We also

developed a prototype implementation of our proposal and

performed experiments over PlanetLab, which show that the

stabilization strategy improves the overall streaming quality

of the system by reducing the packet losses due to churn.

Particularly, relying on BN, it produces better results than

non-contextual approaches. Experimental results indicate that

considering user behavior improves the streaming quality and

contextual approach of user behavior modeling can better

estimate the behavior.

Research directions opened by this work are numerous.

Concerning short term future work, the use of our model

can be extended to include other metrics such as bandwidth

contribution and streaming quality of a peer in forming the

stream delivery topology. As an example case, a tree structure

that progressively promotes stable peers with a good contribut-

ing ratio and streaming quality to higher levels will improve

the overall throughput of the system. Similar approach can

be applied to hybrid push-pull systems in which the amount

of pushed stream can be increased through letting peers

subscribe to stable upstream peers with sufficient available

bandwidth and good streaming quality. Concerning pull-based

systems, our model can be used in decision making for

chunk scheduling. For instance, pulling chunks from highly

contributing peers with enough available upload bandwidth

can improve the performance. Concerning long term per-

spective, our work opens a way toward the design of user-

aware management systems that directly integrate the user

behavior in control algorithms. The presented use-case focused

on topology management but it can be extended to several

management functional areas such as capacity planning.
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