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Abstract. Physical agents, such as robots, are generally constrained in
their communication capabilities. In a multi-agent system composed of
physical agents, these constraints have a strong influence on the orga-
nization and the coordination mechanisms. Our multi-agent system is
a satellite constellation for which we propose a collaboration method
based on incremental coalition formation in order to optimize individual
plans so as to satisfy collective objectives. This involves a communication
protocol, common knowledge and two coordination mechanisms: (1) an
incentive to join coalitions and (2) coalition minimization. Results on a
simulated satellite constellation are presented and discussed.

1 Introduction

In the agent literature, and more precisely in a multi-agent context, most of the
coordination mechanisms deal with software agents or social agents that have
high communication and reasoning capabilities. Coordination based on norms
[5], contracts [17] or organizations [10] are considered. As far as physical agents
such as robots or satellites are concerned, information sharing and coordination
depend on communication constraints. Indeed, on the one hand, an agent cannot
always communicate with another agent or the communication possibilites are
restricted to short time intervals. On the other hand, an agent cannot always wait
until the coordination process terminates before acting. All these constraints are
present in space applications.

In the space domain, autonomous satellite constellations (i.e. networks of
satellites) allow to consider joint activities and ensure functional robustness [4].
We consider a set of 3 to 16 satellites placed in low orbit around the Earth to
take pictures of the ground. Ground stations send the satellites asynchronous
observation requests with various priorities. Satellites are also equipped with a
detection instrument that allows areas of interest to be detected and on-board
observation requests to be generated. As each satellite is equipped with a single
observation instrument with use constraints, geographically close requests cannot
be realized by the same satellite. Likewise each satellite has limited memory
resources and can realize only a given number of requests before downloading.
Notice that in the space lexicon downloading means transferring data to a ground
station (i.e. the pictures taken when a request is realized). Finally the orbits of



the satellites cross around the poles: two (or more) satellites that meet in the
polar areas can communicate via InterSatellite Links (ISL) without any ground
intervention. So the satellites can communicate from time to time in order to
share information and coordinate.

Consequently the problem we focus on is a distributed task allocation prob-
lem in a multi-agent system with new tasks arriving asynchronously and inter-
mittent communications. Each satellite (each agent) builds and revises a task
plan such that the number of tasks realized by the constellation is the highest
possible, they are realized as soon as possible, the number of redundancies (re-
fer to Definition 5) is the lowest possible and the number of high priority tasks
that are not realized is the lowest possible. Notice that these constraints are not
necessarily compatible with each other.

Centralized planning is not considered because (1) the aim of future space
applications is to avoid using ground stations as much as possible (operating a
ground station is expensive); (2) the asynchronous generation of new requests
by each satellite prevents us from having a centralized view of the problem and
therefore a centralized resolution. In the literature, two distributed approaches
are considered to control a satellite constellation:

1. the hierarchical approach [2, 7, 8, 20] where a leading satellite plans for the
others: this approach is very sensitive to local failures and to the arrival of
new tasks;

2. the decentralized approach [4] but ISL are not considered to increase the
quality of the local plans.

As new tasks arrive as time goes by, a decentralized approach in which ISL
are taken into account must be considered. In this paper the allocation problem is
addressed with an online incremental dynamic organization mechanism in three
steps:

1. agents plan individually;
2. agents communicate in order to build common knowledge;
3. agents build and revise coalitions that influence their individual plans.

This paper is organized as follows. In Section 2 we will describe how agents
are modelled in a multi-agent system. In Section 3 we will present how agents
communicate and reason to build a trusted common knowledge. The organiza-
tion model is presented in Section 4 and the formal mechanism is described in
Section 5. Before concluding Section 6 will show results about performance and
scalability of the approach.

2 The agents

2.1 The multi-agent system structure

The satellite constellation is a multi-agent system defined as follows:



Definition 1 (Constellation) The constellation S is a triplet 〈A, T,Vicinity〉
with A = {a1 . . . an} the set of n agents representing the n satellites, T ⊂ N a
set of dates defining a common clock and Vicinity : A × T 7→ 2A a symmetric
non-transitive relation specifying for a given agent and a given date the set of
agents with which it can communicate at that date (acquaintance model). Vicinity
represents the temporal windows when the satellites meet; it is calculated from
the satellite orbits, which are periodic.

Definition 2 (Periodicity) Let S be a constellation and {p1 . . . pn} the set of
the orbital cycle durations pi ∈ T of agents ai ∈ A. The Vicinity period P ∈ T

is the lowest common multiple of set {p1 . . . pn}.

In the remainder, we will note TP ⊂ T the time interval of duration P such
that TP = [0 . . . P ].

The constellation (agents, clock and Vicinity) is knowledge that all the agents
hold in common. Nonetheless each agent also holds private knowledge.

2.2 Observation requests modelled as tasks

Each agent representing a satellite within the constellation knows some tasks to
realize.

Definition 3 (Task) A task t is an observation request associated with a pri-
ority prio(t) ∈ N and with a boolean bt that indicates whether t has been realized
or not.

In the space domain, 1 stands for the highest priority whereas 5 is the lowest.
Consequently the lower prio(t), the more important task t.

The tasks may be constrained in two ways: (1) mutual exclusion meaning that
a given agent cannot realize several tasks at the same time τ ; (2) composition
of n tasks meaning that all the n tasks must be realized : it is useless to realize
only a strict subset of them. Formally,

Definition 4 (Compound task) A compound task is a subset T of tasks such
that (∃ti ∈ T , ti is realized)⇒ (∀tj ∈ T , tj 6= ti, tj must be realized).

Moreover when a task is realized by an agent, it is redundant if it has already
been realized by another agent:

Definition 5 (Redundancy) Let ai be an agent that realizes a task t at time
τ ∈ T. There is a redundancy about t if and only if ∃ aj ∈ A and ∃ τ ′ ∈ T

(τ ′ ≤ τ) such that aj has realized t at time τ ′.



2.3 Agents’ attitudes modelled as intentions

An intention represents an agent’s attitude towards a given task.

Definition 6 (Intention) Let Iai

t be the intention of agent ai towards task t.
Iai

t is a modality of proposition (ai realizes t) :

– � ( commitment): ai is committed to realize t ;
– ♦ (proposal): ai proposes to realize t ;
– �¬ ( strong withdrawal): ai will not realize t ;
– ♦¬ (weak withdrawal): ai does not propose to realize t.

A realization date rea(Iai

t ) ∈ T ∪ {Ø} and a download date tel(Iai

t ) ∈ T ∪ {Ø}
are associated with each intention.

2.4 Agents’ private knowledge

The private knowledge of an agent within the constellation is defined as follows:

Definition 7 (Knowledge) A piece of knowledge Kτ
ai

of agent ai at time τ is
a triplet 〈DKτ

ai
, AKτ

ai
, τKτ

ai
〉:

– DKτ
ai

is a task t or an intention Iak

t of ak about t, ak ∈ A;

– AKτ
ai
⊆ A is the subset of agents knowing Kτ

ai
;

– τKτ
ai
∈ T is the date when DKτ

ai
was created or updated.

Let Kτ
ai

be the knowledge of agent ai at time τ : Kτ
ai

is the set of all the pieces of
knowledge Kτ

ai
.

From Kτ
ai

, we define T τ
ai

= {t1 . . . tm} the set of tasks known by agent ai at
time τ ; and Iτ

ai
= (Iak

tj
) the matrix of the intentions known by agent ai at time

τ . Each agent ai has resources available to realize only a subset of T τ
ai

.

2.5 The individual planning process

The set of an agent’s intentions corresponds to its current plan. Each commit-
ment or proposal means that the associated task is planned. The tasks associated
with withdrawals are not planned. Notice that the individual planning process
itself is beyond the scope of our work. Consequently we assume that each agent
has an individual planner. Planning is a three-step process:

1. From the set of unrealized tasks known by ai at time τ , ai computes an
optimal local plan under two criteria:
– maximize the number of planned tasks;
– minimize the number of unplanned high priority tasks.

2. The intentions of agent ai about the tasks t at time (τ − 1) constrain the
planning process (step 1):
– tasks associated with a commitment (�) are always planned;



– tasks associated with a strong withdrawal (�¬) are never planned.
3. Agent ai’s plan at time τ modifies its intentions as follows:

– each new planned task generates a proposal (♦);
– each new unplanned task generates a weak withdrawal (♦¬).

We can notice that commitments (�) and strong withdrawals (�¬) are not
generated by the planning process. We will see in Section 5 that these intentions
are generated by a collaboration process between the agents.

3 Building a trusted common knowledge

The agents have to reason on common knowledge about tasks and intentions.
Consequently a communication protocol is defined to allow an agent to know
what the other agents know. Communication is based on Vicinity: when two
agents meet they can communicate. Consequently the Vicinity structure influ-
ences the communication capabilities.

3.1 Communication

We define communication within the constellation as follows:

Definition 8 (Communication) Let S be a constellation and ai, aj ∈ A. An
agent ai can communicate with an agent aj in two ways:

– directly iff ∃ τi ∈ TP such that aj ∈ Vicinity(ai, τi);
– indirectly iff ∃ l ∈ N

∗ such that ∃ {(aτk
, τk) ∈ A× T, k ∈ [0 . . . l]} where:

1. aτ0
∈ Vicinity(ai, τi);

2. aτk+1
∈ Vicinity(aτk

, τk) and τi < τk < τk+1 < τj ;
3. aj ∈ Vicinity(aτl

, τj).

Figure 1 illustrates direct communication between two agents whereas Fig-
ure 2 illustrates indirect communication.

In case of an indirect communication, ai and aj may communicate through
several agents forming a daisy chain. As Vicinity is symmetric and non-transitive,
direct communication is symmetric whereas indirect communication is oriented
from one agent to another one. Each communication from ai to aj is associated
with a couple (τi, τj) ∈ T

2 with τi the emitting date of ai and τj the receipt
date of aj . We will write: ai communicates with aj at (τi, τj). In case of a direct
communication, τi = τj .

3.2 Unfolding the Vicinity relation

In order to compute the next indirect communication between two agents from
a given date, Vicinity is projected on a valued-directed-graph V . Formally,

Definition 9 (Vicinity graph) Let S be a constellation. The Vicinity graph V
derived form the Vicinity relation is such that V = (A, {(ai, aj)}, {{vij}}) where:
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Fig. 2. Indirect communication

– A is the set of vertices of V;
– edge (ai, aj) exists iff ∃ τ ∈ TP such that aj ∈ Vicinity(ai, τ);
– each edge is labelled with set vij = {τ ∈ TP : aj ∈ Vicinity(ai, τ)}.

The following example illustrates this definition.

Example 1 Let a1, a2, a3 be three agents. Let us suppose that Vicinity is defined
as follows on period P = 20. The Vicinity graph is shown on Figure 3.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Vicinity(a1, 2) = {a2}
Vicinity(a2, 5) = {a3}
Vicinity(a3, 8) = {a1}
Vicinity(a1, 12) = {a2}
Vicinity(a2, 15) = {a3}
Vicinity(a3, 16) = {a1}
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Fig. 3. Vicinity graph for Example 1

Intuitively an indirect communication from agent ai to agent aj is a path
from vertex ai to vertex aj . Thereby from this multi-valued graph, a single-
valued graph with respect to the current date is unfolded and the lowest weighted
path between both vertices is computed. This single-valued graph is built as it is
explored. In order to do that, we propose a modified Dijkstra’s algorithm where:
(1) the current time τi is stored in vertex ai (initial time plus the weight of the
current path); (2) the weight of each edge (ai, aj) is computed online as follows:
min vij − τi (mod P ).

Example 2 Let us resume Example 1 and apply the algorithm in order to com-
pute at time 1 the next indirect communication from a1 to a3.

1. Consider the edges from the vertex a1, (a1, a2) and (a1, a3). The weights
of edges (a1, a2) and (a1, a3) are respectively (min(2 − 1 (mod 20), 12 − 1



(mod 20))), that is to say 1, and (min(8 − 1 (mod 20), 16 − 1 (mod 20))),
that is to say 7. The current times for vertex a2 and a3 are respectively 2
and 8;

2. As a path from a1 to a3 has been computed thanks to the edge (a1, a3), a first
solution has been found: a direct communication at (8, 8).

3. Let us continue the exploration from vertex a2 and consider edge (a2, a3). Its
weight is computed as (min(5 − 2 (mod 20), 15 − 2 (mod 20)))), that is to
say 3 and the current time stored in vertex a3 is 5. A new path from a1 to a3

has been computed through the edges (a1, a2) and (a2, a3). A better solution
has been found: an indirect communication at (2, 5).

Because Vicinity is common knowledge within the constellation, each agent
can compute all communications itself.

3.3 An epidemic protocol

An epidemic protocol based on overhearing [13] has been proposed in [3]. The
agents use every communication opportunity even to communicate information
that does not concern themselves:

1. each agent ai considers its own knowledge changes;
2. ai communicates the changes to aj ∈ Vicinity(ai, τ);
3. aj updates its own knowledge thanks to the timestamp τKτ

ai
.

It has been proved that, in a set of n agents where a single agent knows a
piece of information, an epidemic protocol needs O(log n) communication rounds
to completely propagate this information [15]. During a communication round,
each agent executes a communication step that has a polynomial complexity in
the number of agents and tasks [3].

The agents reason on common knowledge about intentions. Because of the
communication delays, this common knowledge concerns only a subset of agents.
Formally,

Definition 10 (Common knowledge) At time τ , agent ai knows that agent
aj knows intention Iai

t captured by Kτ
ai

iff:

– aj ∈ AKτ
ai

or

– ai communicated with aj at (τi, τj) such that τKτ
ai
≤ τi, τj ≤ τ .

3.4 The trust model

As indirect communications take time and proposals can be revised meanwhile,
some agents’ common knowledge may become obsolete. Therefore trust erosion
has to be modelled according to the system dynamics. Our application can be
viewed as an ad-hoc network, however trust literature on ad-hoc networks [14,
24, 28] focus on the reliability of a node itself and the way to route reliable in-
formation. In our application, as agents are trustworthy, trust erosion does not
come from the nodes themselves but from interactions between nodes. Conse-
quently we propose a trust model based on communication in order to define a
trusted common knowledge.



Last confirmation When two agents communicate at time τ , the agent that
receives a given proposal cannot be sure that this intention will be the same
at time τ ′ (τ ′ > τ). Indeed as the environment is dynamic, an agent may re-
ceive new tasks or new intentions and modify its plan, i.e. its own intentions,
accordingly. The more time between the generation of a given proposal and the
realization date, the less an agent can trust this proposal. However a further con-
firmation transmitted by the agent that has generated this proposal increases
the associated trust again.

As the agents are honest and cooperative, an indirect communication (which
is a testimony) is trustworthy itself. Thereby an agent ai considers that a given
proposal generated by an agent aj has been confirmed if aj communicates (di-
rectly or not) with ai without modifying its proposal. The last confirmation date
is defined as follows:

Definition 11 (Last confirmation date) Let ai be an agent, I
aj

t a proposal
of an agent aj about a task t known by ai. The last confirmation date of proposal
I

aj

t for ai at time τ is:

τ∗ = max
τKτ

ai
<τj

τi<τ

{τj : aj communicates I
aj

t to ai at (τj , τi)} and I
aj

t is unchanged

Example 3 Let us resume Example 1. Let us suppose that, at time 15, a3 com-
putes the trust associated with a proposal of agent a1 generated at time 7. a1

communicated directly with a3 at time 8 then it communicated indirectly with
a3 at time (12, 15) without modifying its proposal. Thereby the last confirmation
date is 12 and a3 knows that a1 kept its proposal between times 7 and 12.

Trust Intuitively, the trust associated with a proposal depends on the time
between its last confirmation date and its realization date. As the agents do
not have a model of the environment, they cannot predict the arrival of new
tasks. However as time goes by, an agent meets other agents and each meeting
is an opportunity to receive new tasks and revise its intentions. Consequently
an agent’s trust about a given proposal is defined from the number of meetings
between the last confirmation date and the realization date. This number is
based on Vicinity therefore each agent can compute its own trust in the others’
proposals.

Definition 12 (Meetings) Let ai be an agent, I
aj

t a proposal known by ai and
τ the current date. Let τ∗ be the last confirmation date of I

aj

t for ai at time τ .
The number of agents Mai

τ∗(I
aj

t ) agent aj will meet between τ∗ and rea(I
aj

t ) is:

Mai

τ∗(I
aj

t ) = |
⋃

τ∗<τ ′<rea(I
aj
t )

Vicinity(aj , τ
′)|

Finally, an agent trusts or does not trust a given proposal:



Definition 13 (Trust) Let ai be an agent, I
aj

t a proposal known by ai and τ
the current date. Agent ai trusts agent aj about I

aj

t iff Mai

τ∗(I
aj

t ) = 0.

Example 4 Let ai be an agent that knows proposal I
aj

t at time τ . Let us sup-
pose that Mai

τ∗(I
aj

t ) = 5. Agent ai does not trust aj about this proposal. Let us
suppose that aj keeps its proposal for long enough to confirm it twice. At each
confirmation, ai can compute Mai

τ∗(I
aj

t ) again, e.g. 3 and 1, and can trust aj

more.

We can notice that the trust criterion of Definition 13 is hard: an agent is not
trusted if it meets at least another agent before realizing its proposal (Mai

τ∗(I
ak

t )
= 0). This pessimistic assumption can be relaxed (e.g. Mai

τ∗(Iak

t ) ≤ 1).

4 Coalitions

4.1 State-of-the-art

A coalition is an agent organization with a short life cycle. It is formed in order to
realize a given goal and is destroyed when the goal is achieved. Through a coali-
tion each agent tries to maximize its own outcome. In the literature, the methods
dedicated to coalition formation are based on the exploration of the lattice of the
possible coalition structures [18, 25]. As the agents often have uncertain and (or)
incomplete information on the other agents’ costs and preferences, they need to
use heuristics [12] or trust [19] to evaluate a coalition value and find the optimal
structure.

Generally speaking, these methods have two limits.
On the one hand they are often centralized, assuming that all tasks are known
by all agents, and they are performed off-line [6, 9, 16, 21] ; or they use an auc-
tioneer (or other kinds of hierarchy) [1, 22] that centralizes the information and
organizes the negotiations.
As far as communications are concerned, methods based on the system organi-
zation structure consider constrained communications: agents can communicate
through a hierarchy [1, 22] or in a static vicinity [11, 23]. These constraints are
associated with a communication cost [27]. However in a real dynamic environ-
ment agents are not always able to exchange information and may have to decide
alone. Moreover some tasks cannot wait until the complete coalition structure
is computed and must be realized quickly. Consequently these methods are very
sensitive to the system dynamics.

Be that as it may the coalition formation mechanisms are worthwhile for
three reasons: (1) agents gather in order to realize a collective task; (2) the
short life cycle of coalitions suits to dynamic environments; (3) agents search for
efficient solutions under uncertain and (or) incomplete information. Moreover
in our application a compound task requires that some agents should realize
the subsets of tasks jointly (see Definition 4). However these joint realizations
cannot be planned by the agents’ individual planners as an agent does not plan



for the others. In order to dynamically organize the agents, we will consider a
decentralized coalition formation mechanism taking into account the features
of the problem, i.e. cooperative agents and constrained communications. The
mechanism is as follows:

1. Agents build maximal-size coalitions with respect to their own knowledge;
2. These coalitions are refined as the agents meet to remove useless agents.

4.2 Definitions

Coalitions are defined as follows:

Definition 14 (Coalition) A coalition C is a triplet 〈A, O, P〉 :

– A ⊆ A is a subset of agents that are the members of the coalition;
– O is the set of tasks that are the goals of the coalition;
– P is the set of tasks that are the power of the coalition.

A coalition C may be :

– complete iff O ⊆ P;
– minimal iff C is complete and A is minimal for inclusion (⊆).

The next section will show how coalitions, which are built and managed
locally by each agent, allow agents to collaborate.

5 Collaboration via coalitions

Coalitions are built and managed locally by each agent given the knowledge it
has about the other agents through communication. Indeed each agent uses the
coalition notion to reason and adapt its own intentions to the others’ intentions.
Therefore coalitions are formed implicitly through intentions but are not explic-
itly built by the multi-agent system. The collaboration steps are such that
each agent:

1. computes the current coalition structure according to its point of view;
2. checks whether it should join a coalition to increase its power;
3. checks whether it should withdraw from a coalition to minimize it;
4. modifies its intentions accordingly.

5.1 Computation of the coalition structure

Each agent ai generates the current coalition structure as follows:

I ai organizes the set of tasks T τ
ai

as a partition {T1 . . . Th} according to the
compound tasks;

Example 5 Let T τ
ai

be {t1, t2, t3, t4, t5}. Let us suppose that tasks t1 and
t2 form a compound task as well as t4 and t5. Then T τ

ai
is organized as

{{t1, t2}, {t3}, {t4, t5}}.



II each Ti is the goal Oi of a single potential coalition; as subsets Ti are dis-
joint1, the number of potential coalitions generated by agent ai is given by
the number of compound tasks ai knows;

III from agent ai’s point of view, the potential coalition members for subset Ti

are defined as: Ai = {ak ∈ A : ∃ t ∈ Ti /∃ Iak

t ∈ K
τ
ai

such that Iak

t ∈ {�, ♦}}

Example 6 Let us resume Example 5. Let us consider t3 and suppose that
Iai

t3
= ♦ and Iak

t3
= �. ai can build coalition C = 〈{ai, ak}, {t3}, {t3}〉. This

coalition is complete but not minimal because {ai, ak} is not minimal for
inclusion. Notice that ai plans t3 even if it knows that ak did the same.
Indeed the others’ intentions are not taken into account in the planning
step: they will be taken into account in the collaboration steps (2, 3, 4).

IV then the power of each potential coalition is defined as: Pi = {t ∈ Oi|∃ak ∈
Ai : Iak

t ∈ {�, ♦}}

Notice that this framework defines the current coalition structure from agent
ai’s point of view. A potential coalition may be minimal (thus complete), com-
plete and not minimal or incomplete.

5.2 An incentive to join coalitions

An incomplete coalition means that at least one goal task is not within the
coalition power. But the more tasks within the coalition power, the more goal
tasks become important because a coalition must realize all its goal tasks. If the
coalition remains incomplete, all its members waste their resources.

When agent ai computes the current coalition structure according to its
knowledge, it can detect incomplete coalitions. As ai is cooperative it should be
incited to modify its intentions and complete these coalitions when planning. In
order to do that, the priorities of the goal tasks within the incomplete coalitions
are increased. In the following we will note prio(t)′ the priority of task t ai uses
for its next planning step. Notice that prio(t)′ is a local priority only used by ai

(the initial priority prio(t) of task t remains the same).

Protocol 1 (Join a coalition) For each incomplete coalition C = 〈A, O, P〉

formed by agent ai, ai computes: ∀ t ∈ O, prio(t)′ ← prio(t)
1+|P| .

ai is incited to join a coalition if and only if the goal of the coalition is to
realize a compound task that is partially planned.

As far as singletons {tj} are concerned, two cases may be considered. (1) If
tj is not planned by ai, it is because it does not satisfy the optimization criteria
(Section 2.3). Therefore ai does not build any coalition concerning tj and the
priority of tj remains the same. (2) If tj is planned, the coalition concerning tj
is complete and its priority remains the same.

1 The compound tasks are assumed disjoint but notice that they can overlap without
modifying the collaboration process.



Example 7 Let us resume Example 5. Let us consider {t1, t2} and suppose that
Iai

t1
= ♦¬, Iai

t2
= ♦¬, Iak

t1
= ♦¬ and Iak

t2
= �. ai can build coalition C =

〈{ak}, {t1, t2}, {t2}〉. This coalition is incomplete. So ai applies Protocol 1. As
ak is already a member of the coalition, the priorities of t1 and t2 are halved for
ai. Therefore at the next planning step, ai is more likely to plan t1 or t2 instead
of other tasks.

This mechanism is stable, i.e. two successive incentive steps are consistent.
For instance, an agent is not incited to give up a given task in order to realize
another one, then ceteris paribus is not incited to give up the latter to realize
the former.

5.3 Minimizing coalitions: conflicts

A complete and non-minimal coalition has the power to realize its goals with
useless agents, i.e. agents that have redundant intentions. Within a coalition an
agent has to consider the agents that have planned the same tasks as it has, then
to make a decision about modifying or not its own intentions. There is a conflict
between two agents within a coalition if they have planned the same task(s).
Formally:

Definition 15 (Conflict) Let ai, aj be two agents and C a coalition 〈A, O, P〉
such that {ai, aj} ⊆ A. There is a conflict between ai and aj iff ∃ t ∈ P such that
Iai

t ∈ {�, ♦} and I
aj

t ∈ {�, ♦}. It is a soft conflict iff either ai communicates
with aj at (τi, τj) such that τI

ai
t

< τi and τj < min(rea(Iai

t ), rea(I
aj

t )) or aj

knows agent ai’s intention about t. Else it is a hard conflict.

Example 8 Let us resume Example 6. The coalition is not minimal: there is a
conflict about task t3 between agents ai and ak. So ai has to make a decision in
order to withdraw (�¬), to keep its intention (♦) or to commit (�).

In the remainder, given an agent ai and a task t, we will denote A∗ the set
of agents with which it is in conflict about task t, A+ ⊆ A∗ the set of agents in
soft conflict and A− ⊆ A∗ the set of agents in hard conflict.

Proposition 1 (Symmetry) Let ai be an agent and A∗ the set of agents with
which it is in conflict about task t. ∀ aj ∈ A+, the conflict is symmetric. ∀ aj ∈
A−, the conflict is asymmetric.

Proof 1 Let ai be an agent and A∗ the set of agents with which it is in conflict
about task t.

1. (soft conflict) ∀ aj ∈ A+, ai knows I
aj

t . Conversely either aj knows Iai

t , or
∃ τi, τj ∈ T such that ai communicated with aj at (τi, τj) with τI

ai
t

< τi and

τj < min (rea(Iai

t ), rea(I
aj

t )). In both cases the conflict is symmetric.
2. (hard conflict) ∀ aj ∈ A−, aj does not know Iai

t and will not know it before
date min (rea(Iai

t ), rea(I
aj

t )). So aj is not and will not be aware of the
conflict.

Both soft and hard conflicts are dealt with through protocols based on the
agents’ expertise for realizing the task.



5.4 Minimizing coalitions: the expertise criterion

As we are seeking to optimize the system swiftness, it is better that the agents
realize the tasks as soon as possible and use the fewest resources possible (mean-
ing keeping the pictures in the satellite memory for the shortest time possible,
i.e. downloading them as soon as possible). Let us aggregate both criteria in a
single expertise criterion. Formally:

Definition 16 (Expertise) Let ai be an agent and A∗ ⊆ A be a set of agents
in conflict with ai about a task t. Let us note rea∗ = min

ak∈A∗∗∪{ai}
rea(Iak

t ) the

earliest realization date for task t. The expert agent a∗ for t is defined using the
following distance:

a∗ = arg min
ak∈A∗∪{ai}

||(rea(Iak

t )− rea∗, tel(Iak

t )− rea∗)||

Figure 4 is a representation of the expertise criterion for a task t in the plan
(rea(Iai

t ), tel(Iai

t )), ai ∈ A∗. The origin rea∗ is the earliest realization date
for t and intention (rea∗, rea∗) is the ideal intention corresponding to an agent
being able to realize t at time rea∗ and download the corresponding picture
immediately. tel∗ is the latest download date for t, if t is realized at time rea∗.
Obviously tel(Iai

t ) > rea(Iai

t ) therefore only the hatched part is meaningful.
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Fig. 4. Expertise criterion

Any point within the hatched part is a po-
tential intention I

ai
t

about t. The resource
consumption, i.e. how long the picture cor-
responding to t will remain in the mem-
ory of the satellite, is defined as a dura-
tion. The distance between a potential in-
tention and rea∗ represents the projection
of the time criteria on the plan (rea(Iai

t
),

tel(Iai
t

)). The expert agent for t is the one
that minimizes this distance.

5.5 Minimizing coalitions: coordination strategies

In order to solve a conflict, three strategies are defined. (1) With the secure
strategy ai maintains its proposal (♦) if it does not trust the other agents about
their intentions; as these agents are likely to change their intentions, this strategy
maintains redundancies to make sure that the task will be realized. (2) With the
collaboration strategy ai commits (�) if it is the expert agent, therefore deciding
on a part of the current coalition structure. (3) With the opportunistic strategy
ai strongly withdraws (�¬) if the expert agent is trusted, therefore minimizing
the size of the coalition and saving resources for further tasks.

From the three strategies two conflict solving protocols are defined:



Protocol 2 (Hard conflict) Let A∗ be the set of the coalition members with
which agent ai is in conflict about task t such that A− 6= ∅. ai is aware of the
conflict and applies:

1. if min
ak∈A−

Mai

τ∗(I
ak

t ) > 0 then Iai

t ← ♦

2. else Iai

t ← �¬

In case of a hard conflict the agent that is aware of the conflict applies (1)
the secure strategy if it does not trust the agents within the conflict ; else (2) if
it trusts them the aware agent applies the opportunistic strategy.

Protocol 3 (Soft conflict) Let A∗ be the set of the coalition members with
which agent ai is in conflict about task t such that A+ 6= ∅. Let rea∗ be min

ak∈A+
rea(Iak

t ).

Then agent ai applies:

1. if ai = arg min
ak∈A+

||(rea(Iak

t )− rea∗, tel(Iak

t )− rea∗)|| then Iai

t ← �

2. else let a∗ be the expert agent:
(a) if Mai

τ∗(Ia∗

t ) > 0 then Iai

t ← ♦

(b) else Iai

t ← �¬

For soft conflicts each agent computes the expert agent. (1) If it is the expert
agent, it commits. (2.a) If not, it applies the secure strategy if it does not trust
the expert (2.b) If it trusts the expert it applies the opportunistic strategy.

6 Experiments

The different mechanisms and protocols we have described have been imple-
mented. Two metrics are considered to compare the results: the number of re-
alized tasks and the number of realized tasks without redundancies. The first
metric corresponds to the number of distinct singletons or compound tasks re-
alized. Experiments have been conducted on three kinds of constellations:

– isolated : no communication;
– informed : agents communicate only about tasks and coordinate a posteriori

by withdrawing already realized tasks from their plans;
– coordinated : agents communicate about tasks and intentions and coordinate

a priori thanks to coalition formation.

6.1 First scenario : dynamic simulations

These experiments are based on a dynamic scenario with 3 agents. Every 6th
hour, ground stations send 40 new compound tasks (including at least 2 singleton
tasks) to the agents. The number of realized tasks is shown on Figure 5 and the
number of realized tasks without redundancies is shown on Figure 6.

Figures 5 and 6 show that informed and coordinated constellations outper-
form isolated ones. However we can notice that the benefits increase as time goes
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by. Indeed incremental coordination allows coordinated constellations to realize
more tasks than the other kinds of constellations. And as time goes by the dif-
ference between informed and coordinated constellations increases: incremental
coordination allows coordinated constellations to efficiently save and reallocate
resources. It is important to notice that, in this experiment, agents are not lim-
ited in terms of resources (contrary to real satellites). Consequently the number
of realized tasks without redundancies is the main performance measure.

6.2 Second scenario : scalability

In order to experiment the scalability of our system we have considered a scenario
with 500 atomic tasks and Walker’s satellite constellations [29] of different sizes
(1, 4, 6, 8, 9, 12 and 16 satellites dispatched regularly on a finite number of orbital
plans). The agents must realize all the tasks and the constellation swiftness and
efficiency are then compared.

Definition 17 (Performance) Let Tn the time for n agents to realize all the
tasks, K the set of realized observations (i.e. the realized tasks and their redun-
dancies) and R the set of realized tasks. The constellation swiftness is given by
T1

Tn
and the constellation efficiency is given by |R|

|K| .

We can notice on Figure 7 that the swiftness of isolated constellations is
approximated by a logarithmic function whereas the swiftness of informed and
coordinated constellations are not regular. This is due to the heterogeneous struc-
ture of the satellite interactions. Indeed isolated satellites have no interactions
but, for informed and coordinated constellations, interactions exist only between
satellites belonging to different orbital plans (see Figure 9).

Consequently 2 satellites situated on 4 plans can have more interactions
than 4 satellites situated on 3 plans: the topology of the interactions matters.
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More precisely the number of satellites is not the major parameter but their
orbits: few satellites may communicate often whereas many satellites may only
communicate from time to time. This phenomenon can be observed between the
8- and 12-satellite constellations.

As far as efficiency is concerned, we can notice on Figure 8 that coordinated
constellations are in average 5% more efficient than informed constellations. They
are also 19% more efficient than isolated constellations. The constellations are
scalable according to Turner [26]: a system is scalable if the resource consumption
can be bounded by a polynomial function. In our application, the number of

realized observations divided by the number of realized tasks |K|
|R| represents the

resource overconsumption: it is the inverse of the efficiency.

7 Conclusion

We have proposed a collaboration method for physical agents that communicate
from time to time in a dynamic environment. This method has been applied
to a constellation of satellites. A communication protocol has been proposed in



order to build a trusted common knowledge (in terms of tasks and intentions)
as the agents meet. As new tasks appear in the system the agents may revise
their intentions. Thereby trust is defined through the communications between
agents. Each time an agent communicates, it may receive new information that
modifies its intentions. On the other hand the more an agent communicates, the
more it can confirm its intentions and the more trust may increase.

The collaboration process is an online incremental decentralized coalition
formation that proceeds through a planning - communication - collaboration
loop within each agent. Each agent builds an initial plan. From its knowledge,
each agent builds the potential coalitions that can realize the tasks it knows.
Afterwards these coalitions are refined thanks both to an incentive mechanism
and an optimization mechanism. As the agents communicate, they refine the
coalition structure dynamically and adapt it to new knowledge.

The experimental results show that the coalition formation mechanism al-
lows the resource consumption to be minimized. Then the saved resources are
reallocated in a incremental way and the number of realized tasks is increased.
Furthermore our approach is scalable despite the non linear topology of the satel-
lite constellations. It allows to reduce the number of involved satellites (that are
highly costly) for the same swiftness. Further works will deal with the possible
failures of the agents and their consequences on the collaboration process.
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