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Abstract. Physical agents, such as robots, are generally constrained in
their communication capabilities. In a multi-agent system composed of
physical agents, these constraints have a strong influence on the orga-
nization and the coordination mechanisms. Our multi-agent system is
a satellite constellation for which we propose a collaboration method
based on an incremental coalition formation in order to optimize indi-
vidual plans so as to satisfy collective objectives. This involves a com-
munication protocol, a common knowledge notion and two coordination
mechanisms: (1) an incentive to join coalitions and (2) coalition mini-
mization. Results on a simulated satellite constellation are presented and
discussed.

1 Introduction

In the agent literature, and more precisely in a multi-agent context, most of the
coordination mechanisms deal with software agents or social agents that have
high communication and reasoning capabilities. Coordination based on norms
[6], contracts [14] or organizations [4, 9] are considered. However in real-world
applications, communication constraints have to be considered in order to share
information and to coordinate.

As far as physical agents such as robots or satellites are concerned, the en-
vironment has a major impact on coordination due to the physical constraints
that weigh on the agents. Indeed, on the one hand, an agent cannot always com-
municate with another agent or the communication possibilites are restricted to
short time intervals. On the other hand, an agent cannot always wait until the
coordination process terminates before acting. All these constraints are present
in space applications.

In the space domain, autonomous satellite constellations (i.e. closed networks
of satellites) allow to consider joint activities and ensure functional robustness
[5]. We consider a set of 3 to 20 satellites placed in low orbit around the Earth
to take pictures of the ground. Ground stations send the satellites asynchronous
observation requests with various priorities. Satellites are also equipped with a
detection instrument that allows areas of interest to be detected and on-board
observation requests to be generated. As each satellite is equipped with a single



observation instrument with use constraints, too close requests cannot be realized
by the same satellite. Likewise each satellite is constrained in memory resources
and can realize only a given number of requests before downloading1. Finally,
the orbits of the satellites cross around the poles: two (or more) satellites that
meet in the polar areas can communicate via InterSatellite Links (ISL) without
any ground intervention. So the satellites can communicate from time to time
in order to share information and coordinate.

Centralized planning is not considered because (1) the aim of future space
applications is to avoid using ground stations as much as possible (operating a
ground station is expensive); (2) the asynchronous generation of new requests
by each satellite prevents having a centralized view of the problem and therefore
a centralized resolution.

Consequently, the problem we focus on is a decentralized task allocation
problem in a multi-agent system with new tasks arriving asynchronously and in-
termittent communications. Each satellite (each agent) builds and revises a task
plan such that the number of tasks realized by the constellation is the highest
possible, they are realized as soon as possible, the number of redundancies2 is
the lowest possible and the number of high priority tasks that are not realized is
the lowest possible. Notice that these constraints are not necessarily compatible
with each other. The communication problem was firstly addressed in [3]. In this
paper the allocation problem is addressed with an online incremental dynamic
organization mechanism in three steps:

1. agents plan individually ;
2. agents communicate in order to build a common knowledge ;
3. agents build and revise coalitions that influence their individual plans.

2 The agents

2.1 The multi-agent system structure

The constellation is a multi-agent system defined as follows:

Definition 1 (Constellation) The constellation S is a triplet 〈A, T,Vicinity〉
with A = {a1 . . . an} the set of n agents representing the n satellites, T ⊂ N+ a
set of dates defining a common clock and Vicinity : A × T 7→ 2A a symmetric
non transitive relation specifying for a given agent and a given date the set of
agents with which it can communicate at that date (acquaintance model). Vicinity
represents the temporal windows when the satellites meet; it is calculated from
the satellite orbits, which are periodic.

1 Downloading consists in transferring data to a ground station (i.e. the pictures taken
when a task is realized).

2 There is a redundancy when two different agents realize the same task whereas only
one would have been sufficient.



Definition 2 (Periodicity) Let S be a constellation and {p1 . . . pn} the set of
the orbital cycle durations pi ∈ T of agents ai ∈ A. The Vicinity period p̊ ∈ T

is the lowest common multiple of set {p1 . . . pn}.

We define communication within the constellation:

Definition 3 (Communication) Let S be a constellation and ai, aj ∈ A:

– (Figure 1) Agent ai can communicate directly with agent aj iff ∃ τ within
p̊ such as aj ∈ Vicinity(ai, τ);

– (Figure 2) Agent ai can communicate indirectly with agent aj iff ∃ {ak ∈
A, i ≤ k < j} and ∃ {τkwithin p̊, i ≤ k < j} such as ak+1 ∈ Vicinity(ak, τk).

In case of an indirect communication, ai and aj may communicate through
several agents forming a daisy chain. As Vicinity is symmetric but not transitive,
direct communication is symmetric whereas indirect communication is oriented
from an agent to another one. Each communication from ai to aj is associated
with a couple (τi, τj) ∈ T2 with τi the emitting date of ai and τj the receipt
date of aj . We will write: ai communicates with aj at (τi, τj). In case of a direct
communication, τi = τj .
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Fig. 1. Direct communication
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Fig. 2. Indirect communication

The constellation (agents, clock and Vicinity) is knowledge that all the agents
hold in common.

2.2 Private knowledge

The private knowledge of an agent within the constellation is defined as follows:

Definition 4 (Knowledge) A piece of knowledge Kτ
ai

of agent ai at time τ is
a triplet 〈DKτ

ai
, AKτ

ai
, τKτ

ai
〉:

– DKτ
ai

is a task tj or an intention Iak

tj
of ak about tj, ak ∈ A;

– AKτ
ai
⊆ A is the subset of agents knowing Kτ

ai
;

– τKτ
ai
∈ T is the date when DKτ

ai
was created or updated.



Let Kτ
ai

be the knowledge of agent ai at time τ : Kτ
ai

is the set of all the pieces of
knowledge Kτ

ai
.

From Kτ
ai

, we define T τ
ai

= {t1 . . . tm} the set of tasks known by agent ai at
time τ ; and Iτ

ai
= (Iak

tj
) the matrix of the intentions known by agent ai at time

τ . Each agent ai has resources available to realize only a subset of T τ
ai

.

2.3 Tasks

Each agent within the constellation knows some tasks to realize.

Definition 5 (Task) A task t is an observation request associated with a pri-
ority3 prio(tj) ∈ N∗ and with a boolean btj

that indicates whether tj has been
realized or not.

The tasks may be constrained in two ways:

– mutual exclusion: it is an agent’s constraint meaning that it cannot realize
several tasks at the same time τ ;

– composition of n tasks: all the n tasks must be realized, it is useless to
realize only a strict subset of them. Formally,

Definition 6 (Compound task) A compound task is a subset T of tasks
such as (∃ti ∈ T , ti is realized) ⇒ (∀tj ∈ T , tj 6= ti must be realized).

Moreover when a task is realized by an agent, it is redundant if it has already
been realized by another agent:

Definition 7 (Redundancy) Let ai be an agent that realizes a task tk at time
τ ∈ T. There is a redundancy about tk if and only if ∃ aj ∈ A and ∃ τ ′ ∈ T

(τ ′ ≤ τ) such as aj has realized tk at time τ ′.

2.4 Intentions

An intention represents an agent’s attitude towards a given task.

Definition 8 (Intention) Let Iai

tj
be the intention of agent ai towards task tj.

Iai

tj
is a modality of proposition (ai realizes tj) :

– � ( commitment): ai is committed to realize tj
– ♦ (proposal): ai proposes to realize tj
– �¬ ( strong withdrawal): ai will not realize tj
– ♦¬ (weak withdrawal): ai does not propose to realize tj

A realization date rea(Iai

tj
) ∈ T ∪ {Ø} and a download date tel(Iai

tj
) ∈ T ∪ {Ø}

are associated with each intention.

3 In the space domain, 1 stands for the highest priority whereas 5 is the lowest. Con-
sequently the lower prio(tj), the more important task tj .



The set of an agent’s intentions corresponds to its current plan. Each commit-
ment or proposal means that the associated task is planned. The tasks associated
with withdrawals are not planned. We assume that each agent has an individual
planner. Planning is a three-step process:

1. From the set of unrealized tasks known by ai at time τ , ai computes an
optimal local plan under two criteria4:
– maximize the number of planned tasks;
– minimize the number of unplanned high priority tasks.

2. The intentions of agent ai about tasks tj at time (τ − 1) constrain the
planning process (step 1):
– tasks associated with a commitment (�) are always planned;
– tasks associated with a strong withdrawal (�¬) are never planned.

3. Agent ai’s plan at time τ modifies its intentions as follows:
– each new planned task generates a proposal (♦);
– each new unplanned task is set aside (♦¬).

We can notice that the commitments (�) and strong withdrawals (�¬) are
not generated by the planning process. We will see in Section 5 that these in-
tentions are generated by a collaboration process between the agents.

2.5 Trust in proposals

An agent that receives a given proposal at time τ cannot be sure that this
intention will be the same at time τ ′ (τ ′ > τ). Indeed as the environment is
dynamic, an agent may receive new tasks or new intentions and modify its plan,
i.e. its own proposals, accordingly. The more time between the generation of a
given proposal and the realization date, the less an agent can trust it. However a
further confirmation transmitted by the agent that has generated this proposal
increases the associated trust again. This mechanism is described in more details
in [2]. Here, we define formally the last confirmation of a proposal:

Definition 9 (Last confirmation) Let ai be an agent, I
aj

tj
a proposal of an

agent aj about a task tj known by ai. The last confirmation of proposal I
aj

tj
for

ai at time τ is:

τ∗ = max
τKτ

ai
<τj,τi<τ

{τj : aj communicates with ai at (τj , τi)}

As the agents do not have a model of the environment, they cannot predict
the arrival of new tasks. However as time passes, an agent meets other agents
and each meeting is an opportunity to receive new tasks and revise its intentions.
Consequently an agent’s trust about a given proposal is defined from the number
of meetings between the last confirmation and the realization date. This number
is based on Vicinity therefore each agent can compute its own trust in the others’
proposals.

4 The individual planning process itself is beyond the scope of our work. The mono-
agent planning problem may be adressed with many techniques such as constraint
programming or HTN planning.



Definition 10 (Meetings) Let ai be an agent, I
aj

tj
a proposal known by ai

and τ the current date. Let τ∗ be the last confirmation of I
aj

tj
for ai at time τ .

The number of agents Mai

τ∗(I
aj

tj
) agent aj will meet between τ∗ and rea(I

aj

tj
) is

Mai

τ∗(I
aj

tj
) = |

⋃

τ∗<τ ′<rea(I
aj
tj

)

Vicinity(aj , τ
′)|

Definition 11 (Trust) Let ai be an agent, I
aj

tj
a proposal known by ai and τ

the current date. ai trusts aj about I
aj

tj
if and only if Mai

τ∗(I
aj

tj
) = 0.

We can notice that the trust criterion is hard: an agent is not trusted if
it meets another agent before realizing its proposal (Mai

τ∗(Iak

tj
) = 0). This pes-

simistic assumption can be relaxed (e.g. Mai

τ∗(I
ak

tj
) ≤ 1).

3 Communication

The agents have to reason on a common knowledge in terms of tasks and inten-
tions. A communication protocol is defined to allow an agent to know what the
other agents know. Because of the communication delays, this common knowl-
edge concerns only a subset of agents.

3.1 An epidemic protocol

An epidemic protocol based on overhearing [11] has been proposed [3]. The
agents use every communication opportunity even to communicate information
that does not concern themselves:

1. each agent ai considers its own knowledge changes;
2. ai communicates the changes to aj ∈ Vicinity(ai, τ);
3. aj updates its own knowledge thanks to the timestamp τKτ

ai
.

It has been proved that, in a set of n agents where a single agent knows a
piece of information, an epidemic protocol needs O(log n) communication rounds
to completely propagate this information [12]. During a communication round,
each agent executes a communication step that has a polynomial complexity in
the number of agents and tasks [3].

3.2 Common knowledge

Thanks to this communication protocol, we define the notion of common knowl-
edge in terms of intentions:

Definition 12 (Common knowledge) At time τ , agent ai knows that agent
aj knows the intention Iai

tj
captured by Kτ

ai
iff:

– aj ∈ AKτ
ai

or

– ai communicated with aj at (τi, τj) such as τKτ
ai
≤ τi, τj ≤ τ .



4 Coalitions

4.1 State-of-the-art

A coalition is an agent organization with a short life cycle. It is formed in order
to realize a given goal and is destroyed when the goal is achieved. Through a
coalition, each agent tries to maximize its personal outcome. In the literature,
the methods dedicated to coalition formation are based on the exploration of the
lattice of the possible coalition structures [15, 20]. In order to find the optimal
structure, the agents often have uncertain and (or) incomplete information on
the other agents’ costs and preferences: they need to use heuristics [10] or trust
[16] to evaluate a coalition value.

Generally speaking, these methods have two limits.
On the one hand, they are often centralized, they assume that all tasks are
known by all agents and they are performed off-line [7, 8, 13, 17] ; or they use an
auctioneer (or other kinds of hierarchy) [1, 18] that centralizes the information
and organizes the negotiations.
As far as communications are concerned, methods based on the system organi-
zation structure consider constrained communications: agents can communicate
through a hierarchy [1, 18] or in a vicinity [19]. These constraints are associated
with a communication cost [21]. However in a real dynamic environment, agents
are not always able to exchange information and may have to decide alone.
Moreover, some tasks cannot wait for the complete computation of the coalition
structure and must be realized quickly. Thus, these methods are very sensitive
to the system dynamics.

Be that as it may, the coalition formation mechanisms are interesting for
three reasons: (1) agents gather in order to realize a collective task; (2) the short
life cycle of coalitions is adapted to dynamic environments; (3) agents search for
efficient solutions under uncertain and (or) incomplete information.
In our application, compound tasks require that some agents should realize some
subsets of tasks jointly. However these joint realizations cannot be planned by
the agents’ individual planners as an agent does not plan for the others. In order
to dynamically organize the agents, we will consider a decentralized coalition
formation mechanism taking into account the features of our problem, i.e. coop-
erative agents and constrained communications. The mechanism is as follows:

1. Agents build maximal-size coalitions with respect to their own knowledge;
2. These coalitions are refined as the agents meet to remove useless agents.

4.2 Definitions

Coalitions are defined as follows:

Definition 13 (Coalition) A coalition C is a triplet 〈A, O, P 〉 :

– A ⊆ A is a subset of agents that are the members of the coalition;



– O is the set of tasks that are the goals of the coalition;
– P is the set of tasks that are in the power of the coalition.

A coalition C can be in different states:
– C is complete iff O ⊆ P ;
– C is minimal iff C is complete and A is minimal for inclusion (⊆).

The next section will show how coalitions, which are built and managed
locally by each agent, allow agents to collaborate.

5 Collaboration via coalitions

Coalitions are built and managed locally by each agent, given the knowledge
it has about the other agents through communication. Indeed each agent uses
the coalition notion to reason and adapt its own intentions to the others’ inten-
tions. Therefore, coalitions are formed implicitly through intentions but are not
explicitly built by the multi-agent system. Each agent:

1. computes the current coalition structure according to its point of view;
2. checks whether it should join a coalition to increase its power;
3. checks whether it should withdraw from a coalition to minimize it ;
4. modifies its intentions accordingly.

5.1 Computation of the coalition structure

Each agent ai generates the current coalition structure as follows:

1. ai organizes the set of tasks T τ
ai

as a partition {T1 . . .Th} according to the
compound tasks;
Example 1 Let T τ

ai
be {t1, t2, t3, t4, t5}. Let us suppose that tasks t1 and t2

form a compound task as well as t4 and t5. Then T τ
ai

is organized as {{t1, t2},
{t3}, {t4, t5}}.

2. each Ti is the goal of a single potential coalition; as subsets Ti are disjoint5,
the number of potential coalitions generated by agent ai is given by the
number of compound tasks ai knows;

3. from agent ai’s point of view, the potential coalition members for subset Ti

are defined as: {ak ∈ A : ∃ tj ∈ Ti / ∃ Iak

tj
∈ Kτ

ai
such that Iak

tj
∈ {�, ♦}}

Example 2 Let us resume Example 1. Let us consider t3 and suppose that
Iai

t3
= ♦ and Iak

t3
= �. ai can build coalition C = 〈{ai, ak}, {t3}, {t3}〉. This

coalition is complete but not minimal because {ai, ak} is not minimal for
inclusion. Notice that ai plans t3 even if it knows that ak did the same.
Indeed the others’ intentions are not taken into account in the planning step:
they will be taken into account in the collaboration steps (2, 3, 4).

4. then the power of each potential coalition is defined as: P = {tj ∈ O|∃ai ∈
A : Iai

tj
∈ {�, ♦}}

A potential coalition may be minimal (thus complete), complete and not
minimal or incomplete.

5 The compound tasks are assumed disjoint but notice that they can overlap without
modifying the collaboration process.



5.2 An incentive to join coalitions

An incomplete coalition means that at least one goal task is not within the
coalition power. But the more tasks within the coalition power, the more goal
tasks become important because a coalition must realize all its goal tasks. If the
coalition remains incomplete, all its members waste their resources.

When agent ai computes the current coalition structure according to its
knowledge, it can detect incomplete coalitions. As ai is cooperative, it should be
incited to modify its intentions and complete these coalitions when planning. In
order to do that, we propose to increase the priorities of the goal tasks of the
incomplete coalitions. In the following, we will note prio(t)′ the priority of task
t ai uses for its next planning step. Notice that prio(t)′ is a local priority only
used by ai. The commercial or physical priority prio(t) of task t remains the
same.

Protocol 1 (Join a coalition) For each incomplete coalition C = 〈A, O, P 〉,

agent ai computes: ∀ t ∈ O, prio(t)′ ← prio(t)
1+|P | .

The agent is encouraged to join a coalition if and only if the goal of the
coalition is to realize a compound task that is partially planned.

Remarks: as far as singletons {tj} are concerned,

– if tj is not planned by ai, it is because it does not satisfy the optimization
criteria (Section 2.4); therefore ai does not build any coalition concerning tj
and the priority of tj remains the same;

– if tj is planned, the coalition concerning tj is complete and its priority re-
mains the same.

Example 3 Let us resume Example 1. Let us consider {t1, t2} and suppose that
Iai

t1
= ♦¬, Iai

t2
= ♦¬, Iak

t1
= ♦¬ and Iak

t2
= �. ai can build coalition C =

〈{ak}, {t1, t2}, {t2}〉. This coalition is incomplete. So ai applies Protocol 1. As
ak is already a member of the coalition, the priorities of t1 and t2 are halved for
ai. Therefore at its next planning step, ai is more likely to plan t1 or t2 instead
of other tasks.

This mechanism is stable, i.e. two successive incentive steps are consistent.
For instance, an agent is not encouraged to give up a given task in order to
realize another one, then ceteris paribus is not encouraged to give up the latter
to realize the former.

5.3 Minimizing coalitions: conflicts

A complete and non minimal coalition has the power to realize its goals with
useless agents, i.e. agents that have redundant intentions. Within a coalition, an
agent has to consider the agents that have planned the same tasks as it has, then
to make a decision about modifying or not its own intentions. There is a conflict
between two agents within a coalition if they have planned the same task(s).
Formally:



Definition 14 (Conflict) Let ai, aj be two agents and C a coalition 〈A, O, P 〉
such as {ai, aj} ⊆ A. There is a conflict between ai and aj iff ∃ t ∈ P such as
Iai

t ∈ {�, ♦} and I
aj

t ∈ {�, ♦}. It is a soft conflict iff either ai communicates
with aj at (τi, τj) such as τI

ai
tj

< τi and τj < min(rea(Iai

tj
), rea(I

aj

tj
)) or aj knows

agent ai’s intention about tj. Else it is a hard conflict.

Example 4 Let us resume Example 2.The coalition is not minimal: there is a
conflict about task t3 between agents ai and ak. So ai has to make a decision in
order to withdraw (�¬), to keep its intention (♦) or to commit (�).

Proposition 1 (Symmetry) Let ai be an agent and A∗ the set of agents with
which it is in conflict about task tj. ∀ aj ∈ A+, the conflict is symmetric. ∀ aj

∈ A−, the conflict is asymmetric.

Proof 1 Let ai be an agent and A∗ the set of agents with which it is in conflict
about task tj.

– ∀ aj ∈ A+, ai knows I
aj

tj
. Conversely either aj knows Iai

tj
, or ∃ τi, τj ∈ T

such as ai communicates with aj at (τi, τj) and such that τI
ai
tj

< τi and τj

< min (rea(Iai

tj
), rea(I

aj

tj
)). In both cases, the conflict is symmetric and it

is a soft conflict.
– ∀ aj ∈ A−, aj does not know Iai

tj
and it will not know it before the date min

(rea(Iai

tj
), rea(I

aj

tj
)). So aj is not and will not be aware of the conflict ; it is

a hard conflict.

Both soft and hard conflicts are dealt with through protocols based on the
agents’ expertise for realizing the task.

5.4 Minimizing coalitions: the expertise criterion

As we are seeking to optimize the system reactivity, it is better that the agents
realize the tasks as soon as possible and use the fewest resources possible6. Let
us aggregate both criteria in a single expertise criterion. Formally:

Definition 15 (Expertise) Let A∗ ⊆ A be a set of agents in conflict about a
task tj. Let us note rea∗ = min

ai∈A∗

rea(Iai

tj
) the earliest realization date for task

tj. The expert agent for tj is defined using the following distance:

a∗ = arg min
ai∈A∗

||(rea(Iai

tj
)− rea∗, tel(Iai

tj
)− rea∗)||

Figure 3 is a representation of the expertise criterion for a task t in the plan
(rea(Iai

t ), tel(Iai

t )), ai ∈ A∗. The origin rea∗ is the earliest realization date
for t and intention (rea∗, rea∗) is the ideal intention corresponding to an agent
being able to realize t at time rea∗ and download the corresponding picture
immediately. tel∗ is the latest download date for t, if t is realized at time rea∗.
Obviously tel(Iai

t ) > rea(Iai

t ) therefore only the hatched part is meaningful.

6 Using fewer resources means keeping the pictures in the satellite memory for the
shortest time possible, i.e. downloading them as soon as possible.
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Fig. 3. Expertise criterion for task t

Any point within the hatched part is a po-
tential intention I

ai
t about t. The resource

consumption, i.e. how long the picture cor-
responding to t will remain in the mem-
ory of the satellite, is defined as a dura-
tion. The distance between a potential in-
tention and rea∗ represents the projection
of the time criteria on the plan (rea(Iai

t ),
tel(Iai

t )). The expert agent for t is the one
that minimizes this distance.

5.5 Minimizing coalitions: coordination strategies

In order to solve a conflict, three strategies are defined. (1) With a secure strategy
ai maintains its proposal (♦) if it does not trust the other agents about their
intentions; as these agents are likely to change their intentions, this strategy
maintains redundancies to make sure that the task will be realized. (2) With a
collaboration strategy ai commits (�) if it is the expert agent, therefore deciding
on a part of the current coalition structure. (3) With an opportunistic strategy
ai strongly withdraws (�¬) if the expert agent is trusted, therefore minimizing
the size of the coalition and saving resources for further tasks.

From the three strategies, two conflict solving protocols are defined:

Protocol 2 (Hard conflict) Let A∗ be the set of the coalition members with
which agent ai is in conflict about task tj such that A− 6= ∅. ai is aware of the
conflict and applies:

1. if min
ak∈A−

Mai

τ∗(I
ak

tj
) > 0 then Iai

tj
← ♦

2. else Iai

tj
← �¬

In case of a hard conflict, the agent that is aware of the conflict applies (1)
the secure strategy if it does not trust the agents within the conflict ; else (2) if
it trusts them, the aware agent applies the opportunistic strategy.

Protocol 3 (Soft conflict) Let A∗ be the set of the coalition members with
which agent ai is in conflict about task tj such that A+ 6= ∅. Let rea∗ be
min

ak∈A+
rea(Iak

tj
). Then agent ai applies:

1. if ai = arg min
ak∈A+

||(rea(Iak

tj
)− rea∗, tel(Iak

tj
)− rea∗)|| then Iai

tj
← �

2. else let a∗ be the expert agent:
(a) if Mai

τ∗(Ia∗

tj
) > 0 then Iai

tj
← ♦

(b) else Iai

tj
← �¬

For soft conflicts, each agent computes the expert agent. (1) If it is the expert
agent, it commits. (2.a) If not, it applies the secure strategy if it does not trust
the expert (2.b) If it trusts the expert, it applies the opportunistic strategy.



6 Experiments

The different mechanisms and protocols we have described have been imple-
mented. Two metrics are considered to compare the results: the number of real-
ized tasks and the number of realized tasks without redundancy. The first metric
corresponds to the number of distinct singleton or compound tasks realized. Ex-
periments have been conducted on three kinds of constellations:

– isolated : no communication;

– informed : agents communicate only about tasks and coordinate a posteriori
by withdrawing already realized tasks from their plans;

– coordinated : agents communicate about tasks and intentions and coordinate
a priori thanks to coalition formation.

6.1 Reference framework : static simulations

The reference experiments are based on a scenario with 3 agents and 100 tasks.
It is a static scenario, meaning that the initial set of tasks is fixed and new tasks
will not appear during the simulations. Four parameters are considered: the task
density, the task composition rate, the quantity of the agents’ memory resources
and the number of hours needed to complete the tasks. For each parameter value,
we have launched 100 simulations and computed the average result.
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Fig. 4. Realized tasks (with and without redundancy) under density constraint

Definition 16 (Density) The task density represents how close to each other
the tasks are. The closer the tasks, the more they are likely to be in mutual
exclusion.



(Figure 4) The results for informed and coordinated constellations are better
than for isolated constellations. Although informed and coordinated constella-
tions realize nearly the same number of tasks (with a slight advantage for coordi-
nated constellations), coordination allows the number of minimal (i.e. optimal)
coalitions to be increased drastically. However we can notice that the difference
between informed and coordinated constellation in terms of realized tasks is not
so important: this comes from the fact that these experiments are within a static
world, new tasks do not appear during the simulations: when resources are saved
by an agent, they are not necessarily reallocated. In a dynamic world with new
tasks and no bounded temporal horizon, resources will be reallocated.
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Fig. 5. Realized tasks (with and without redundancy) under composition constraint

Definition 17 (Composition) The task composition represents the percentage
of tasks that are in mutual exclusion with another task and that are jointly the
goal of a potential coalition.

(Figure 5) We can notice that increasing the composition ratio decreases the
number of potential coalitions, and consequently the maximal number of com-
plete and minimal coalitions. This affects the informed and coordinated con-
stellations more than the isolated ones: the relative loss of efficiency in terms
of complete and minimal coalitions is higher. However, the absolute results for
informed and coordinated constellations are better than for the isolated ones.

From the initial scenario, we have run simulations where agents must realize
all tasks. Our metric is now the number of hours that are needed to complete
all the tasks. Figure 6 shows results with the density constraint and Figure 7
shows results with the resource constraint. In both cases, we can notice that
informed and coordinated constellations outrun the isolated constellations. The
benefits in swiftness range from 30% to 70% according to the task density; and
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from 60% to 40% according to the resource limitation. Coordination allows to
sligthly increase this benefit (a gain close to 6 hours of reactivity).

6.2 Real-world framework : dynamic simulations
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Fig. 8. Tasks
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Fig. 9. Tasks with no redundancy

The next experiments are based on a dynamic scenario with 3 agents. Every
6th hour, the ground stations send 40 new compound tasks (including at least 2
singleton tasks) to the agents. We have launched 25 simulations and computed
the average result. Two metrics are considered: the number of realized tasks
(Figure 8) and the number of realized tasks without redundancy (Figure 9).



As previously informed and coordinated constellations outperform isolated
ones. However we can notice that the benefits increase as time passes. Indeed
incremental coordination allows coordinated constellations to realize more tasks
than the other kinds of constellations. And as time passes the difference between
informed and coordinated constellations increases: incremental coordination al-
lows coordinated constellations to efficiently save and reallocate resources.

7 Conclusion

We have proposed a collaboration method for physical agents that communicate
from time to time in a dynamic environment. This method has been applied to a
constellation of satellites. A communication protocol has been proposed in order
to build mutual knowledge (in terms of tasks and intentions) as the agents meet.

The collaboration process is an online incremental coalition formation that
proceeds through a planning - communication - collaboration loop within each
agent. Each agent builds an initial plan. From its knowledge, each agent builds
the potential coalitions that can realize the tasks it knows. Afterwards these
coalitions are refined thanks both to an incentive mechanism and an optimiza-
tion mechanism. The agents’ communication capabilities on the one hand and
conflict definitions on the other hand allow us to define protocols that refine the
coalition structure dynamically and adapt it to new knowledge.

The experimental results are promising. In a static world (i.e. bounded tem-
poral horizon, bounded initial set of tasks, no new task) the coalition formation
mechanism allows the resource consumption to be minimized; nevertheless this
does not necessarily have an impact on the number of realized tasks. However
in a dynamic world (i.e. new tasks and unbounded temporal horizon), the saved
resources are reallocated in a incremental way and the number of realized tasks
is increased.

Future work will deal with the possible failures of the agents and the conse-
quences on the other agents’ trusts. The communication complexities of informed
(linear in the number of tasks and agents) and coordinated (polynomial in the
number of tasks and agents) constellations versus the number of saved and real-
located resources are also worth studying. Furthermore simulations involving a
higher number of satellite agents (up to 20) will be performed to verify scalability
of our approach.
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