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Abstract. Coalitional games are models of cooperation where selfish
agents must form groups (coalitions) to maximize their utility. In these
models, it is generally assumed that the utility of a coalition is fixed
and known. As these assumptions are not realistic in many applications,
some works addressed this problem by considering repeated stochastic
coalitional games. In such games, agents repeatedly form coalitions and
observe their utility a posteriori in order to update their knowledge.
However, it is generally assumed that agents have a greedy behavior:
they always form the best coalitions they estimate at a given time step.
In this article, we study if other strategies (behaviors) that allow agents
to explore under-evaluated coalitions may be of interest. To this end, we
propose a model of repeated stochastic coalitional game where agents use
a neural network to estimate the utility of the coalitions. We compare
different exploration strategies, and we show that, due to the structure
of the coalitional games, the greedy strategy is the best despite the fact
exploration-based strategies better estimate the utilities.

Keywords: Sequential decision - Coalition formation - Cooperative game
theory - Multi-agent systems.

1 Introduction

In multi-agent systems, individual agents are not always able to realize some
tasks on their own. In such case, they can decide to cooperate with each other in
forming coalitions, i.e. forming groups of agents able to realize a given task, and
sharing the gains generated afterwards. As agents are selfish and rational, they
will try to earn as much as possible, and can refuse to form certain coalitions
deemed uninteresting for themselves. In the literature, the majority of works
about coalition formation makes two strong hypotheses. The first one is that
agents have perfect a priori knowledge of their payoff when forming a given
coalition. The second hypothesis is that this payoff is deterministic. These two
hypotheses do not seem to fit with real situations where the exact payoff brought
by a coalition is known only a posteriori. Moreover, if this coalition is formed
again, this payoff may not always be the same, if the agents are more or less
efficient in their tasks. For example, we can consider scientists having to repeat-
edly form consortia in order to temporarily work on projects. These consortium
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formations are repeated with the same pool of scientists but the quality of the
results produced by each consortium may vary due to internal factors. For exam-
ple, a internal factor can be the individual skills of the scientists and their ability
to interact better with some rather than others. Moreover, externalities indepen-
dent of the consortia formed may also stochastically impact the quality of the
result. In the literature, some works proposed to relax these hypotheses by con-
sidering repeated stochastic coalitional games. The agents play the same game
— and thus form coalitions — repeatedly. They observe the payoff they obtain
and use this information to estimate the value of each coalition at the next time
step. However, in those works agents use greedy strategies: they form the coali-
tions they estimate the best. We can thus wonder if exploration-based strategies,
which are successful in other contexts, may be of interest in the coalition for-
mation domain. We then propose in this article a high-level repeated stochastic
coalition formation model, and we experimentally assess the performance of sev-
eral strategies compared to a greedy strategy. We finally highlight that, due to
the structure of the coalitional games, the greedy strategy remains the best. This
article is structured as follows. In Section 2, we present the basic notions related
to coalitional games, then we review some works both on stochastic characteristic
functions and repeated coalitional games. In Section 3, we describe our repeated
stochastic coalitional game model, and detail how agents learn the characteristic
function, and the different strategies they can use. Finally, Section 4 is devoted
to evaluate these strategies.

2 State of the art

We present here the basic notions about coalitional games [15], repeated coali-
tional games [1,2, 4] as well as stochasticity in coalitional games [4,7, 11].

2.1 Coalition formation

In a coalition game, a set of agents is partitioned into separate coalitions which
produce an amount of utility. Such partition is called a coalition structure.

Definition 1 (Coalitional game). A game is a tuple G = (N, v) where:

— N ={ay,...,a,} is a set of agents,
— v : 2V 5 R is a characteristic function that assigns a real value to each
coalition, called the coalition utility and denoted v(Cy) where Cy, C N.

We consider in this article coalitional games with transferable utility, i.e.
where agents must decide how to distribute the coalition utility among its mem-
bers [9]. A solution to such a game is defined as follows.

Definition 2 (Solution). A solution to G is a tuple Sg = (C, x) where:

— C is a coalition structure of N,
—x={x1,...,2n} s a payoff vector where x; > 0 is the payoff of agent a;.
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As agents are selfish, when a solution is proposed, all of them must accept it,
i.e. that they must not wish to form or join another coalition where they could
earn more. This is why we are interested in solutions which belong to a solution
concept. A solution concept is the set of solutions that respect a certain notion of
stability. While many concepts have been proposed in the literature such as the
nucleolus or the kernel [5], we focus in this article on the concept of core and its
generalization, the e-core [14,19]. The core is the set of solutions (C, ) for which
no other coalition that could be formed produces a sum of gains greater than
that which agents obtain with &. The e-core allows agents to make a concession,
i.e. agree to reduce their gain by €, in order to form a stable coalition structure.

Definition 3 (e-core). A solution (C,x) belongs to the e-core if and only if:

VC C N,z(C) > v(C) — € with z(C) = le
i€C

The e-core allows to define the least core, which contains all e-core solutions
for the smallest value of € that make the solution concept non-empty.

2.2 Stochastic characteristic functions

In the literature, some works have proposed stochastic coalitional games [4, 7, 8,
11]. The nature of uncertainty in these models differs. For instance, Ieong and
Shoham proposed a probability distribution on worlds representing coalitional
games, each of them having a deterministic characteristic function [11]. Chalki-
adakis and Boutilier considered a deterministic characteristic function modeled
in a stochastic environment with partially observable Markovian decision pro-
cesses [4]. Agents have beliefs about capabilities of other agents and the same
coalition structure can lead to different world states. Charnes and Granot simply
considered that the value of a coalition is a random variable [7, 8]. The charac-
teristic function is then rewritten as v : 2V — X,~. Thus, when a coalition is
formed, the utility produced is determined by the random variable, that follows
a normal distribution. In this model, they compute their payoff vectors by as-
sociating to each agent in a coalition an equal part of the expectation of the
random variable associated to the coalition. In this article, we position ourselves
in the continuity of the Charnes and Granot’s work. Indeed, their model allows
us to deal with the heterogeneity of stochasticity (both internal and external
factors as cited in Section 1) through the use of a single random variable.

2.3 Repeated coalitional games

If we also relax the hypothesis of perfect knowledge of the characteristic function,
whether it is stochastic or not, it becomes interesting to move on to a repeated
game [1,2,4,12]. For instance, Konishi and Debraj [12] have shown that repeated
coalition formation processes converge towards equilibria if agents sequentially
form Pareto-efficient coalition structures. Moreover, repeated coalitional games
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allow to observe the utilities when coalitions are formed in order to learn an
estimation of the characteristic function. Agents can then use this estimation,
and can be able to find an optimal stable solution over time. Models in the
literature essentially differ on the nature of what the agents learn and how they
estimate the coalitions. For instance, Blankenburg et al. [2] learn a reliability
value for each agent, which impact the utility of coalitions. In Chalkiadakis
and Boutilier [4], agents learn both the others’ skills and a stochastic transition
between a given coalition structure and the states it may reach (and therefore a
payoff). In all those works, agents use a greedy strategy: they form the coalition
structure which is estimated the best at each time step. As in other sequential
decision-making problems it has been demonstrated that there is an interest to
explore, i.e. making a priori sub-optimal decision in order to acquire knowledge
[10, 13], we study in this article if exploration-based strategies are efficient in the
context of coalition formation.

3 A general model of repeated stochastic coalitional game

First of all, let us define a model of repeated stochastic coalitional game.

3.1 Game and solution

Definition 4 (Repeated stochastic coalitional game). Let G = (N, T, v)
be a repeated stochastic coalitional game (RSCG) where:

— N ={ay...a,} is a set of agents,

— T C N7 is a set of distinct time steps,

— v:2¥ = x2" s a characteristic function that associates a random variable
to each coalition. For a given coalition C C 2N, we note v(C) = X°. This
characteristic function is unknown to the agents.

At each time step, agents in N have to decide on a solution to the game,
despite the fact that they do not know the characteristic function v a priori. A
solution is, like in a deterministic context, a tuple made of a coalition structure
and a payoff vector. Here, the payoff is an exr ante payoff, i.e. the estimated
payoff based on what the agents know about v.

Definition 5 (Solution to a RSCG). A solution S* at the time step t € T to
a RSCG G is a tuple S* = (C',x") such as:

— C! is a coalition structure (disjointed partition) of N,

—at ={a,... 2L} is a payoff vector such as xt > 0 is the gain of the agent
a; calculated according to the estimated value of the coalition of which he is
a part in the structure Ct.



Strategies for repeated stochastic coalitional games

3.2 Coalition formation process
We consider the following process:

1. Agents are initialized with an a priori knowledge about the game, i.e. an
estimation of the characteristic function, which may reflect either ignorance,
or an expert-knowledge (e.g. larger coalitions produce a higher value);

2. Agents form a coalition structure according to a given strategy based on
their current knowledge of the characteristic function (see Section 3.4);

3. Agents observe the payoff they obtain by forming the structure, and they
update their knowledge of the characteristic function (see Section 3.3). We
assumed that all agents observe the payoff produced by each coalition: hence
they have the same knowledge, and consequently the same estimation;

4. The process is repeated from step 2.

3.3 Estimating the characteristic function

As we assume the ez-post payoffs are observed by all the agents, we denote by
XE the observation of the payoff of coalition C at the time step .

Definition 6 (Observations). Let O, = {(C,t/,X5)): C C2N ¢ € T, #' < t}
be a set of observations at time step t corresponding to the set of the coalitions

formed at each time step before t and their ex-post payoffs. Knowing a solution
St of a RSCG at time step t, Oy 11 = O, U{(C,t, XE)) : VC € Ct}.

Thereafter, let us note O;(C) the set of observations at time step ¢ asso-
ciated with the coalition C C 2. Then the agents can use different methods
to estimate the future payoff, e.g. tabular representation, bayesian network, or
neural network. In order to remain general, we simply consider that the agents
know a function that produces an estimation according to the observations. Such
function has to be instanciated (see experiments in Section 4).

Definition 7 (Payoff estimation). Let E(C,t) be the payoff estimation of a
coalition C C 2N at time step t € T.

3.4 Decision strategies

Once the agents have estimated the characteristic function, they need to decide
which coalitions to form, according to a given strategy that take exploration into
account. We consider two kinds of strategies: e-greedy strategies (also known as
semi-uniform strategies) and contextual strategies. Adapted in the context of
coalition formation, e-greedy strategies are strategies where agents choose the
best coalition structure according to the least core solution concept with a given
probability, or choose a random coalition structure otherwise.

Definition 8 (e-greedy strategy). The e-greedy strategy selects a solution
from the least core solution concept with a probability of €, or a solution drawn
uniformly at random among all solutions otherwise.



J. Guéneron, G. Bonnet

Obviously, when € is set to 1, the e-greedy strategy becomes a simple greedy
strategy as considered in the literature [1,2,4, 12]. When € is set to 0, the agents
choose their coalition structure uniformly at random among all coalition struc-
tures. Contextual strategies are strategies where agents value the information
they can gain as they value a payoff. We consider firstly a strategy, we called
UCB-core strategy, inspired from UCB strategies in multi-armed bandits prob-
lem [10, 13]. Information value is a bias defined as follows.

Definition 9 (Exploration bias). Let v(C,t) : 2V + R a bias such as:

2.10g(|O¢| + 1)

1(C) = 10,(C)] + 1

We now adapt the UCB-strategy in the context of coalition formation. To this
end, we consider a variant of the e-core solution concept, called the UCB-core.

Definition 10 (UCB-core). A solution S* = (C*, x") belongs to the UCB-core
solution concept if, and only if:

YC € N,2'(C) + I'(C,t) > E(C,t) — e +~(C, 1),

with: L
'(C) = Z zt and I(C,t)= Z 7(0‘11‘7)’

a; €C a; €C

where C,, is the coalition of a; in C*

The previous definition means a coalition structure is stable if, and only if,
there is no coalition such that its payoff plus its exploration bias is higher than
what its members earn currently in the coalition structure, knowing the value
given by the exploration bias is equally shared between agents. Hence,

Definition 11 (UCB-core strategy). The UCB-core strategy selects a solu-
tion uniformly at random from the mon-empty UCB-core solution concept with
the smallest e.

The UCB-core strategy may allow solutions that are irrational for some
agents, i.e. solutions where the payoff of at least one agent is lesser than the
payoff he would have received alone. As rationality is an important concept in
coalition formation, we propose another contextual strategy that preserves the
rationality, called the d-core strategy. The idea is to allow agents to sacrifice a
part of their surplus, i.e. the part of the payoff they received in excess of their
singleton coalition, proportional to the exploration biais.

Definition 12 (Surplus). Let 02%(a;, St) be the surplus of the agent a; for a
given solution S at time step t € T. This surplus is computed as

2%(a;, S*) =zt —E(C,t)

i —

where C = {a;}, i.e. the singleton coalition of the agent a;. If the surplus is
negative, it means that the given solution is irrational for agent i, so it will
never be stable.
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Secondly, let us consider a normalized exploration bias.

Definition 13 (Normalized exploration bias).

7(C, 1)
max (y(C’,t))

vCICaN

C(C’ t) =

Once the normalization of exploration factors done, agents can compute how
much of their surplus they accept to not gain. Thus, the payoff an agent can
sacrifice is given by:

Definition 14 (Sacrificable payoff). The sacrificable payoff for a agent a;
and a given solution S* at time step t is given by 6*(a;, S*) = 2 (a;, S*) x (C,t)
where C is the coalition of a; in S*.

We can now define the d-core solution concept. In this solution concept, a
coalition structure is stable if there are no coalitions — that are not part of the
structure — whose estimated payoff, minus the payoff that agents accept not to
earn to form the structure, is greater than the estimated payoff the agents obtain
with the structure.

Definition 15 (d-core). The solution S* = (C,x") belongs to the d-core solu-
tion concept if, and only if:

VO € N,zH(C) > E(C,t) — e — AY(C),

where:
(= Z i and AYC) = Z 8 (ai, SY)

a; €C a;, €C
Hence obviously,

Definition 16 (d-core strategy). The J-core strategy selects a solution uni-
formly at random from the &-core solution concept.

4 Experimentations

To compare the different strategies given above, we generate random games
where agents play repeatedly and observe the evolution of the chosen solutions.

4.1 Experimental protocol

We generate games with 5, 6 and 7 agents, thus for 52, 203, 877 possible coalition
structures respectively. The stochastic characteristic functions of those games are
generated with normal distributions whose their y parameter is drawn from the
normal, uniform and NDCS model proposed in [16, 17]. Hence for each coalition
C C N, the p parameter is |C| x N'(1,0.1) for normal models, |C| x U(0,1) for
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uniform models and N (|C|, /|C]) for NDCS models. The variance o associated
to each coalition is given by o = U(0, §). As the maximal variance is related to
w and as p is higher with large coalitions, the larger a coalition, the higher its
variance may be.

We now need to instantiate the payoff estimation function (Definition 7). In
order to be general and abstract, we use in the experiments a neural network with
two hidden layers. Each layer is a dense layer with a ELU activation function. The
input layer represents coalitions with one neuron dedicated to each agents: input
of 1 for his presence in the coalition, 0 otherwise. The output layer consists in a
single neuron that produces a real value. Such neural network is able to learn non-
linear functions. Here, we use stochastic gradient descent with adaptive moment
estimation to train the network. The loss function is the mean square error. It
is important to notice that this network is not trained offline before playing the
repeated game, but trained at the runtime. Each time the agents observe a payoff
(see the process described in Section 3.2), the network is trained with a set of
examples (coalition, payoff).

For each kind of model (normal, uniform or NDCS) we perform 1000 runs
with different characteristic functions each time (but their type does not change)
where the agents play over 100 time steps. We made two experiments: the first
one compares the performances of the e-greedy strategy when e varies; the second
one highlights the performances of the UCB-core and §-core strategies compared
to the greedy and the random strategy.

4.2 Performance measure

In order to evaluate our model, we measure both the efficiency of the decisions
taken (seen as the optimality of the stable solutions found) over time, and the
accuracy of the estimated characteristic function. The efficiency is measured
from the instant regret at step t, which is the sum of the differences between the
maximum social welfare (the maximum sum of the real expected utilities of the
coalition structures) and the sum of the actual expected utilities of the coalitions
of the structure formed at time step ¢. Formally, instant regret is defined as:

Definition 17 (Instant regret). At one time step t, let S* = (C*,x*) be the
optimal solution, the instant regret at this time step, noted R, is defined by:

R'= 3" po-— Y po

Ccrec Cect
As instant regret can oscillate due to stochasticity, we consider in the sequel
the cumulative regret, i.e. the sum of instant regrets from the beginning of an
experiment to a given time step. The accuracy of the estimated characteristic
functions is given by the mean absolute error (MAE) measure over the coalitions.

Definition 18 (Mean absolute error). The distance DY, between two
characteristic functions at time step t is defined by:

b Do 0(0) —v(©)|
MAE — |2N|
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4.3 Results
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Fig. 1: Results for the e-greedy strategy on normal characteristic functions
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Fig. 2: Results for the e-greedy strategy on uniform characteristic functions

Figures 1, 2 and 3 show respectively for normal, uniform and NDCS char-
acteristic functions the MAE and regret at the end of the experiment for the
e-greedy strategy, when e vary between 0 and 1, and when the number of agents
increase. The oscillations when € is low are due to the higher number of data
points. Independently of the number of agents, the learning error decreases when
€ increases, i.e. when going from a greedy strategy to a random exploration.
However, the regret remains the same or increases when € increases. Thus, while
semi-uniform exploration is interesting to better estimate the characteristic func-
tion as expected, it is helpless to decrease the regret in the context of coalition
formation. Pure greedy strategies are still the best. Figures 4, 5 and 6 show
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Fig. 6: Results for 7 agents with contextual strategies on NDCS functions

respectively for normal, uniform and NDCS characteristic functions the MAE
and the cumulative regret for 7 agents. Due to space and readability constraints,
we do not give the figures for 5 and 6 agents, but in all experiments, they present
the same shapes. Concerning the MAE, as expected, the random strategy learns
the best, while the greedy strategy learns the worse. UCB-core strategy is very
efficient and close to the random strategy. d-core strategy is worse but better
than the greedy strategy. Concerning the cumulative regret, we can see its con-
vergence. As the curve as close to each other, we provide a zoom on the final
steps. For the NDCS model, the greedy strategy remains the best, followed by
UCB-core strategy, d-core strategy (and finally random strategy). Greedy strat-
egy remains the best for uniform models. In the particular case of normal models,
all strategies tend to be confounded.

5 Conclusion

We studied in this article repeated stochastic coalitional games, which relax hy-
pothesis which may be too strong for real work application. In such models,
agents use greedy strategies, i.e. they form at each time step the best coalition
structure they estimate, form the coalitions, and update their knowledge accord-
ingly. However, are exploration-based strategies, known to be efficient in other
contexts, interesting for such games? To answer this question, we proposed a
high-level model of repeated coalitional games, and experiment several strate-
gies: e-greedy strategy, UCB-core strategy and J-core strategy. The results show
that, as expected exploration-based strategies allows to better estimate the char-
acteristic function. However, the greedy strategy remains the best for repeated
coalition formation. Indeed, learning the precise value of each coalition indepen-
dently is not useful in coalition formation as long as the agents correctly rank
the coalitions. In terms of perspectives, these results must be consolidated on
other models of characteristic function, and with a higher number of agents.
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