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Abstract. Classically, in coalition formation, agents know in advance
the deterministic utilities they will obtain from coalitions. Relaxing these
two assumptions (determinism and a priori knowledge) is important to
deal with real-world applications. A way to do that is to consider the
framework of repeated stochastic coalitional games. Here, agents decide
at each time step which coalition to form on the basis of limited infor-
mation. Then, their observations allow them to update their knowledge.
We propose a solution concept that explicitly integrates an exploration
bias to allow agents to sometimes form coalitions that have a low utility
but that would be interesting to form to obtain more information. We
compare this concept to a greedy approach and highlight its efficiency
with respect to the structure of the real utilities, unknown to the agents.

Keywords: Coalition Formation · Cooperative Game Theory · Sequen-
tial Decision

1 Introduction

In MAS, individual agents are not always able to perform certain tasks alone.
When the system is composed of selfish and rational agents, the agents may
form groups, called coalitions, in order to jointly perform tasks that cannot
be handled individually. However, the majority of work on coalition formation
makes two strong assumptions. The first is that agents have perfect a priori
knowledge of the payoff they obtain when forming a coalition. The second one
is that this payoff is deterministic. Both assumptions do not seem adequate for
real-world problems where the exact payoff obtained by a coalition is only known
a posteriori. Moreover, if the same coalition is subsequently reformed, its payoff
has no reason to be strictly the same, due to internal or external factors. For
example, consider legal entities that have to repeatedly form consortia to work
temporarily on projects. These consortia formations are repeated by the same
agents. However, the quality of the results produced by each consortium may
vary. For instance an internal factor may be the agents’ individual skills, whose
effects may be stochastic, coupled with their ability to interact better with some
agents than with others. An external factor could be an environmental effect
independent of the agents, such as a disaster in the office of one of them. Thus,
it seems interesting to relax assumptions of determinism and a priori knowledge.
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However, it raises new questions. If agents no longer have knowledge about
coalitions, how can they obtain it? If the payoff from coalitions is stochastic, how
can they estimate it? The literature then proposes to consider repeated games,
which allow the outcome of the same game to be observed sequentially. Thus,
agents can observe the state of the game at different times and are able to extract
information from it. Nevertheless, the main objective of coalition formation is
to partition the agents into coalitions. In this new context, where the utilities
of coalitions are stochastic and unknown to the agents, how do we decide which
coalitions to form? This choice can be broken down into several questions. How
can agents favour the formation of one coalition over another based on what
they know about them? At what point do they consider that they know enough
about a coalition to properly assess its usefulness? How can agents collectively
decide which interactions could be accepted by all?

In this article, we propose a new solution concept for repeated stochastic
coalition formation, based on an exploration-exploitation trade-off, well-known
in reinforcement learning. To do so, we redefine an existing solution concept,
integrating a notion of interest in exploration in order to allow agents to form
stable coalitions while accepting to form them to obtain more information. This
consists in introducing a new notion of stability for repeated stochastic coali-
tional games, to allow a trade-off between exploiting a rather known payoff and
exploring coalitions with unknown or very uncertain payoffs (taking into account
mean and variance of the characteristic function known at a given time step).
We show that our solution concept is very efficient on unstructured character-
istic functions, and is better than an ε-greedy strategy except in the case of a
highly structured characteristic function. These results extend previous results
[11] which did not considered some informations (i.e. variance) and unstructured
characteristic functions.

Section 2 presents coalitional games and their stochastic and repeated ex-
tensions. Section 3 describes our solution concept which explicitly integrates a
notion of exploration, as well as an instantiation of such notion. Finally, section
4 presents experimental results, highligthing the interest of our solution concept.

2 State of the art

In cooperative game theory, agents cooperate by forming coalitions which pro-
duce some utilities.

Definition 1 (Coalitional game). A coalitional game is a tuple G = 〈N, v〉
where N = {a1, . . . , an} is a set of agents and v : 2N → R is the characteristic
function that associates a utility v(C) to each coalition C ⊆ N .

A partition of agents into coalitions is called a coalition structure and a
solution to a coalitional game is defined as follows.

Definition 2 (Solution). A solution to a coalitional game G is a tuple SG =
〈CS, ~x〉 where CS is a coalition structure of N , ~x = {x1, . . . , xn} is a payoff
vector for agents where xi ≥ 0 is the payoff of agent ai.
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As agents are selfish, a solution must be accepted by all of them. This is why
a solution must belong to a solution concept. A solution concept is the set of
solutions that respect a certain notion of stability, e.g. the agents do not wish
to form or join another coalition where they could earn more. We focus in this
article on the concept of the core and its generalization, the ε-core [15, 17].

Definition 3 (ε-core). A solution 〈C, ~x〉 belongs to the ε-core if and only if:

∀C ⊆ N, x(C) ≥ v(C)− ε with x(C) =
∑
ai∈C

xi

The ε-core allows to define the least core, which contains all ε-core solutions
for the smallest value of ε for which the solution concept is non-empty [7]. On the
first hand, the determinism of the characteristic function can be relaxed in the
literature with stochastic coalitional games [8, 6, 12]. The nature of uncertainty
in these models differs, from probabilitic distribution on deterministic character-
istic functions [12] to agents having beliefs about capabilities of others [6]. The
most general and abstract model we can consider was proposed by Charnes and
Granot [9]. Here, the characteristic function v : 2N → X2N is simply defined by
random variables, and the payoff vectors of the solutions are calculated on the
expectation of those variables. In the sequel, we consider such kind of model.

On the other hand, relaxing the a priori knowledge of the characteristic func-
tion leads to repeated games [4]. Such games consists in repeating the following
process at each time step: (1) the agents form coalitions based on their current
knowledge; (2) the coalitions are formed and produce payoffs; (3) the agents up-
date their knowledge based on the previous observed payoffs. Here again, models
in the literature essentially differ on the nature of what the agents learn and how
they estimate the coalitions. Generally, they learn a reliability value or skill ex-
pertise for each agent, which impacts in turn the characteristic function [5, 6,
13]. However from the most abstract point of view, they can simply learn the
characteristic function [11]. In the sequel, we consider such an abstract model
for shake of generality.

Definition 4 (Repeated stochastic coalitional game). Let G = 〈N,T, v, v̂〉
be a repeated stochastic coalitional game (RSCG) where: N = {a1, . . . , an}
is a set of agents, T ⊂ N+ is a set of distinct time steps, v : 2N → X 2N

a stochastic characteristic function – unknown to the agents – that associates
a random variable to each coalition, and v̂ : 2N × T → X̂ 2N a characteristic
function that associates an estimated utility to each coalition at each time step.

At each time step, agents have to decide on a solution to the game, despite
the fact that they do not know the characteristic function v a priori. A solution
is, like in a deterministic context, a tuple made of a coalition structure and an
ex ante payoff vector, i.e. an estimated payoff vector based on what the agents
know about v.

Definition 5 (Solution to a RSCG). A solution St at the time step t ∈ T to
a RSCG G is a tuple St = 〈CSt, ~xt〉 where CSt is a coalition structure (disjointed
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partition) of N , and ~xt = {xt1, . . . , xtn} is a payoff vector such that xti ≥ 0 is the
payoff of the agent ai based on v̂ and the coalition ai belongs to in CSt.

It has been shown that repeated coalition formation processes converge to-
wards equilibria if agents sequentially form Pareto-efficient coalition structures
[13]. However, forming Pareto-efficient coalition structures allows agents to form
irrational solutions, i.e. at least one agent receive a payoff lesser than the utility
he would receive while being alone. Interestingly, the processes still converge
experimentally with greedy strategies [5, 6, 11] based on the expected values
of coalitions. However, RSCG may allow to have more information than just
the expected value of the characteristic function, for instance all standardized
moments (mean, variance, skewness, kurtosis). As in other sequential decision-
making problems it has been demonstrated that exploring can help on the long-
term, i.e. making a priori sub-optimal decision in order to acquire knowledge
[10, 14], we propose to extend RSCG with an explicit notion of information, and
with a new solution concept which takes into account the collective interest to
make such sub-optimal choices.

3 An exploration-based ε-core

We propose to adapt the RSCG framework and the associated ε-core solution
concept by considering that the value of a coalition, i.e. its interest to be formed
at a given time step, depends on two elements: an estimation of its utility from
which the payoffs are directly derived, and an interest that the agents have in
forming it in order to obtain more information on its real utility. Notice that
unlike what was done in [11], the interest is intrinsic to the game definition.

Definition 6 (Interest-biased repeated stochastic coalitional game). Let
G = 〈G, i〉 be an interest-biased repeated stochastic coalitional game (IRSCG)
where G is a RSCG and i : 2N × T → R an interest function that associates a
quantitative interest to each coalition at each time step. We denote i(C, t) the
interest of the coalition C at time step t.

As mentioned in Section 2, the agents’ payoff for a given solution is an esti-
mate. Once the solution is found and coalitions are formed, the actual utilities
they produced are the result of stochastic processes parameterised by the char-
acteristic function. We assume that these utilities are observed by all agents. We
denote XC

t the observation of the utility produced by C at time step t.

Definition 7 (Observations). Let Ot = {(C, t′, XC
t′ ) : C ⊆ 2N , t′ ∈ T, t′ < t}

be a set of observations at time step t corresponding to the set of the coalitions
formed at each time step before t and their ex-post payoffs.

Thereafter, let us note Ot(C) the set of observations at time step t associated
with the coalition C ⊆ 2N . This set of observations allows to update the knowl-
edge of agents about the characteristic function. In the following, we assume
that agents estimate the utility of coalitions as normal distributions. Thus, for a
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given coalition C ⊆ 2N , v̂(C, t) is characterised by the expectation and variance
of a normal distribution over all observations.

Definition 8 (Utility estimation). At time step t ∈ T and for the coalition
C ⊆ 2N , the estimated value of C, v̂(C, t), is given by µ̂2(C, t) its expectation
and σ̂2(C, t) its variance, which are computed from the observations of Ot(C).

Thus, the learning method we used is tabular and is similar to what is used
for multi-armed bandits. Since there is uncertainty about the utility produced
by the coalitions once formed, a solution must take this uncertainty into account
to be stable.

3.1 Interest of coalitions

The exact nature of the interest that agents have in a coalition may depend on the
problem. However, the purpose of this interest is to make it possible to explore
other solutions that are potentially interesting for the agents but that might
be considered unstable in the sense of a classical solution concept. However, it
is important to note that in coalition formation we need to compare coalition
structures, which therefore involves comparing different coalitions. For example,
in the case of the core solution concept, checking the stability of a solution
involves comparing the utility of a coalition to the sum of the individual gains
of the agents in that same coalition wherever they are in the solution. We need
to consider a form of interest that allows us to make such comparisons, i.e. to
calculate from the interest of a coalition the individual interest of the agents
that compose it.

Definition 9 (Individual interest). The individual interest ij(Cj , t) of a
agent aj for a coalition Cj to which he belongs at a time step t is:

ij(Cj , t) =
i(Cj , t)

|Cj |

This egalitarian distribution is one of many ways of distributing interest, and
it represents the fact that each agent in a coalition has the same interest in that
coalition, regardless of the other coalitions to which they may belong. However,
it should be noted that the more agents a coalition contains, the lower their
individual interest will be. This distribution therefore tends to favour coalitions
of low cardinality, as several distinct observations can yield more information
than a single one. This individual interest allows us to define the interest of a
coalition with respect to a given coalition structure, regardless of whether or not
the coalition agents are together in the structure.

Definition 10 (Collective interest). The collective interest iCS(C, t) of the
agents of the coalition C w.r.t. of a coalition structure CS at a time step t is:

iCS(C, t) =
∑
aj∈C

ij(C
CS
j , t)

where CCSj is the coalition of the agent aj in the structure CS.
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3.2 λ-core

In order to integrate this interest in coalitions into the solution concept, we must
aggregate it with utility. In order to remain generic at first, we consider in an
abstract way an aggregation operator noted ⊕. Depending on the exact nature
of the interest, this operator can take different forms, for example an addition, a
multiplication or even a maximum. The various elements describing the interest
of the agents being defined, we can now build our solution concept, the λ-core,
based on an exploration-exploitation trade-off. To do this, we adapt the concept
of the ε-core by integrating the aggregation operator and the interest function.
We therefore add, on one side of the inequation, the interest of a coalition to the
expected utility of the coalition, and on the other side the collective interest to
the sum of the agents’ gains with respect to the solution considered.

Definition 11 (λ-core). A solution 〈CSt, ~xt〉 belongs to the λ-core if and only
if ∀ C ⊆ N :

~xt(C)⊕ iCS
t

(C, t) ≥ µ̂(C, t)⊕ i(C, t)− λ with ~xt(C) =
∑
ai∈C

~xti

In a similar way to the ε-core, the least core for this concept of the λ-core
is defined as the one with the smallest λ for which a solution exists. We can
now propose an example of instantiation of this solution concept by defining the
interest as an exploration bias, and the aggregation operator as an addition.

3.3 Example of interest: exploration bias

A relevant notion of interest is that of exploration, which we find in the multi-
armed bandit problem. For this problem, many strategies have been proposed,
and in particular strategies based on a Upper Confidence Bound called UCB [1].
Among the strategies based on this principle, there is UCB-V, which was pro-
posed for the multi-armed bandit problem by Audibert et al. [2]. This describes
an exploration bias taking into account the variance of the underlying proba-
bility distributions of the multi-armed bandit’s arms and has been shown to be
more efficient than the strategy UCB-1 [3]. We therefore adapt UCB-V to apply
it to interest-biased repeated stochastic coalitional games.

Definition 12 (UCB-V exploration bias). The UCB-V exploration bias for
a given coalition C at a time step t is defined as follows:

i(C, t) =

√
2σ̂2(C, t)η

|Ot(C)|+ 1
+ c

3bη

|Ot(C)|+ 1
with η = ζ.log(|Ot|+ 1)

Some constants must be defined. The constant b defines the upper bound of
the problem’s payoffs, so this is dependent on the latter. However, we can assume
that the utilities are normalized over the interval [0, 1] as in multi-armed bandit
problem, and thus define b = 1. The constants ζ and c are control parameters of
the exploration (in particular ζ). We take here the values of the original article,
in which Audibert et al. show the efficiency of these constants when they are
defined as ζ = 1.2 and c = 1.



A solution concept with an exploration bias for coalitional games

4 Experiments

In order to evaluate the performance of our solution concept, we proceed em-
pirically. We generate random sets with different characteristic functions, con-
structed in structured and random ways. We then apply our solution concept
to these games, as well as to mixtures of these games, in order to test our con-
cept on different degrees of structuring, from fully structured to fully random
games. The performance is measured with the instant regret of the stable solu-
tions found at each time step, in order to calculate the cumulative regret over
all time steps.

4.1 Experimental protocol

In a first step, we construct 200 different pairs of games with unique character-
istic functions, for 6 agents. Each pair of games is constructed with two different
characteristic function structures. The first characteristic function is drawn ac-
cording to the NDCS (Normally Distributed Coalition Structures) [16] model.
This model makes it possible to construct structured characteristic functions,
but without strongly constraining the model as with monotonic or superaddi-
tive structures [7]. Thus, the utility expectation µC of each coalition C ⊆ N is
drawn according to a normal distribution N (|C|,

√
|C|). The second character-

istic function is unstructured, as it is drawn randomly and uniformly for each
coalition. Thus, the utility expectation µC of each coalition C ⊆ N is drawn
according to a uniform distribution U(0, 1). In both structuring models, the
variances σ2

C of each coalition C are drawn according to a uniform distribution
U(0, µC

2 ). Each characteristic function is then normalized on the interval [0, 1].
In a second step, in order to create a series of games from the most to the

least structured, for each pair of games, we create intermediate games using a
linear transformation by applying a transformation factor w ∈ [0, 1]. Thus, a
transformation factor of 0 corresponds to the NDCS structured game, while the
factor 1 corresponds to the randomly structured game. A game is created in
0.05 steps for w between the two games of the pair, which corresponds to 19
additional intermediate games. Our solution concept is thus evaluated over 4200
games and 100 time steps each.

Example 1. Let C and C ′ be two coalitions, and v1 and v2 be two characteristic
functions, respectively randomly and NDCS structured:

v1 = {C = N (0.6, 0.2), C ′ = N (0.1, 0.4)}
v2 = {C = N (0.2, 0.4), C ′ = N (0.5, 0.1)}

For a transformation factor of 0.4, the utilities of C and C ′ are such that:

v0.4(1,2) = {C = N (0.36, 0.32), C ′ = N (0.34, 0.22)}

For a transformation factor of 1, the resulting characteristic function is v1:

v1(1,2) = {C = N (0.6, 0.2), C ′ = N (0.1, 0.4)}
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For a transformation factor of 0, the resulting characteristic function is v2:

v0(1,2) = {C = N (0.2, 0.4), C ′ = N (0.5, 0.1)}

These games are also played with the ε-greedy strategy, which will be our
reference strategy. It also describes an exploration-exploitation trade-off, explor-
ing randomly with probability ε, and exploiting with probability 1 − ε. In our
implementation, the exploitation consists in using the concept of the least core
with an ε (for ε-greedy) value of 0.05.

4.2 Performance measures

The first measure is the instant regret, which is the difference between the max-
imum social welfare – i.e. the maximum sum of payoffs produced by a coalition
structure – of the game and the sum of the actual expected utilities of the coali-
tions of the structure formed at time step t. Formally:

Definition 13 (Instant regret). Given the optimal solution S∗ = 〈CS∗, ~x∗〉 in
the sense of social welfare, the instant regret at time step t, noted Rt, is defined
such that:

Rt =
∑

C∗∈CS∗
µC∗ −

∑
C∈CSt

µC

Due to stochasticity, instant regret can oscillate (sometimes with a large
amplitude), which is why the second measure is the cumulative regret. This
measures the evolution of instant regret over time and highlights the convergence
of regret, i.e. the time step at which the strategies have reached their exploration-
exploitation equilibrium and therefore produce constant instant regret. At a time
step t, the cumulative regret is the sum of the instant regrets of each time step
t′ ≤ t. Formally:

Definition 14 (Cumulative regret). Given the optimal solution S∗ = (CS∗, ~x∗)
in the sense of social welfare, the cumulative regret at time step t, noted Rtc, is
defined such that:

Rtc =

t∑
t′=0

Rt
′

Finally, in order to evaluate the learning that the agents do of the real char-
acteristic function over time, we use the mean absolute error (MAE) on the
estimated and real utilities of the coalitions. The closer the MAE is to 0, the
more accurate the estimated characteristic function is. The MAE is defined as:

Definition 15 (Mean absolute error). Let v and v̂ be two characteristic
functions, the mean absolute error Dt

MAE between v and v̂ at time step t is
defined as:

Dt
MAE =

∑
C∈2N |µ̂(C, t)− µC |

|2N |



A solution concept with an exploration bias for coalitional games

(a) w = 0 (b) w = 0.05 (c) w = 0.1

(d) w = 0.25 (e) w = 0.5 (f) w = 0.75

(g) w = 0.9 (h) w = 0.95 (i) w = 1

Fig. 1: Learning error for 6 agents

4.3 Results

Figures 1 and 2 show respectively the evolution of the means of the learning
error and the cumulative regret of the set of games for a given configuration (i.e.
a linear transformation factor w) over the 100 time steps. Figure 3 summarizes
the results with the relative percentage of efficiency of the λ-core versus ε-greedy
for the different transformation factors.

Concerning the learning error in figure 1, a first point to underline is that the
more the characteristic function is structured (thus the closer the transformation
factor w is to 0), the less the learning error is. In general, the ε-greedy strategy is
the one that learns best, with a few exceptions such as for w = 0.95 where the λ-
core allows better learning, or w = 0.05 where the results of the two methods are
very close. However, we can see graphically a difference in behaviour between
them according to the structuring of the characteristic functions. Indeed, the
more structured the characteristic functions are, the more the ε-greedy strategy
learns between the beginning and the end of the experiments. For example, its
learning error decreases respectively by 10.59%, 11.45% and 13.20% for w = 0,
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(a) w = 0 (b) w = 0.05 (c) w = 0.1

(d) w = 0.25 (e) w = 0.5 (f) w = 0.75

(g) w = 0.9 (h) w = 0.95 (i) w = 1

Fig. 2: Mean cumulative regret for 6 agents

w = 0.5 and w = 1. Let us note that this decrease is quasi-linear with the
variation of the factor w. Concerning the λ-core, we can see that the learning
converges quickly, due to the UCB-V exploration bias, and this more and more
quickly as the characteristic functions are destructured. For example, for w =
0, the learning error decreases throughout the experiment, while for w = 1,
the error almost stops decreasing after the time step t = 20. From a more
general point of view for both methods, the more unstructured the characteristic
functions are, the larger the learning error is initially.

Let us then look at the mean cumulative regret in figure 2. For a transfor-
mation factor w = 0, i.e. with a pure NDCS structure, the mean cumulative
regret is in favour of the ε-greedy strategy, just as for a w = 0.05. However, from
w = 0.1 onwards, the λ-core performs better in terms of regret, and the gap is
larger for larger values of w. From these results, we can deduce that the ε-greedy
strategy performs well on highly structured characteristic functions but that the
less structuring there is, the less well it performs. However, it should be noted
that when the ε-greedy strategy is outperformed by the λ-core, it is mainly the
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Fig. 3: Relative percentage of efficiency of λ-core against the ε-greedy strategy

latter that gains in performance more than the ε-greedy strategy loses. Indeed,
the latter obtains a mean cumulative regret of 45.91 for w = 0 and 47.13 for
w = 0.1, i.e. a difference of 1.22. For its part, the λ-core obtains a mean cumu-
lative regret of 58.28 for w = 0 and 44.58 for w = 0.1, i.e. a difference of 13.70.
This difference is 16.07 for w = 0.25, 37.91 for w = 0.5, 35.11 for w = 0.75, up
to a difference of 64.39 for w = 1. In the latter case, the mean cumulative regret
for the λ-core is 34.98 while it is 99.37 for the ε-greedy strategy. The relative
efficiency of λ-core against the ε-greedy strategy is highlighted in figure 3. On
the latter, we can see that the gap in favour of the λ-core only increases until
w = 0.4 and then stabilises. For w = 0, λ-core is 23, 66% less efficient than ε-
greedy. It becomes 2, 9% more efficient from w = 0.1, until 60, 87% for w = 0.4.
Then, for w ≥ 0.4, the relative efficiency in favour of λ-core stabilises around
65%, with a maximum of 69.90% for w = 0.85. Thus, the λ-core solution concept
performs very well on unstructured characteristic functions, and remains more
efficient than the ε-greedy strategy as long as the structuring is not very impor-
tant. It is however necessary to note that the λ-core is more efficient on slightly
structured characteristic functions. For example, it obtains a mean cumulative
regret of 22.39 with w = 0.5, while for w = 1 it is 34.98 (with a minimum for
w = 0.45 with 21.94 of mean cumulative regret).

5 Conclusion

In this paper, we proposed the interest-biased repeated stochastic coalitional
games. This model allows a new solution concept, the λ-core, based on an
exploration-exploitation trade-off by integrating a notion of interest for the
agents. By setting this interest to an exploration bias and defining the aggre-
gation as an addition, we have shown that this solution concept is efficient on
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repeated stochastic coalitional games, especially when the characteristic func-
tions are not very strongly structured. However, the computation of the λ-core
is time consuming due to exploration bias. Indeed, this bias leads the least core
to have a high value of λ, and thus to traverse more the space of the solutions
because a naive approach of this calculation consists in seeking λ-core by iter-
atively incrementing the value of λ. Thus, it would be relevant to work on a
distributed or decentralised approach of the calculation.
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