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a b s t r a c t

Peer-to-Peer (P2P) architectures for live video streaming has attracted a significant

attention from both academia and industry. P2P design enables end-hosts to relay

streams to each other overcoming the scalability issue of centralized architectures.

However, these systems struggle to provide a service of comparable quality to that of

traditional television. Since end-hosts are controlled by users, their behavior has a

strong impact on the performance of P2P streaming systems, leading to potential

service disruption and low streaming quality. Thus, considering the user behavior in

these systems could bring significant performance improvements. Toward this end, we

propose a Bayesian network that captures all the elements making part of the user

behavior or related to it. This network is built from the information found in a cross-

analysis of numerous large-scale measurement campaigns, analyzing the user behavior

in video streaming systems. We validate our model through intensive simulations

showing that our model can learn a user behavior and is able to predict several

activities helping thus in optimizing these systems for a better performance. We also

propose a method based on traces collection of the same user type that accelerates the

learning process of this network. Furthermore, we evaluate the performance of this

model through exploring its applications and comparison with non-contextual models.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

P2P live video streaming has become a popular applica-
tion among the Internet users in recent years. In contrast to
IP multicast, it does not require a major change in the
current Internet infrastructure. It pushes the load of content
delivery to end-hosts turning them into relays that not only
receive the content but also transmit it to each other. This
feature makes them potentially scalable and deployable
with a low cost as compared to centralized Client/Server
ll rights reserved.

(G. Bonnet),
(C/S) systems which are expensive and do not scale under a
large number of users.

End-hosts in a P2P network, called peers, are con-
trolled by users. Users behave independently and their
behavior directly impacts the performance of these sys-
tems. For example, the abrupt departure of a user disrupts
the stream to its neighbor peers. Similarly, high arrival
rates degrade the performance of the whole community.
These issues have been indirectly addressed through
mesh-based designs and by the use of large buffers.
Nevertheless, mesh-based systems require peers to
exchange the content availability information with each
other and then content is delivered through explicit
requests. It incurs an overhead and increases playback
delay. Moreover, large buffers increase startup delays. To
overcome these problems, the management of network
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topology with awareness of user behavior can play an
important role.

Towards this end, we get insights from user behavior
measurements in video streaming systems. We extract
from these measurements, the components of the user
behavior, their relationships with external elements and
network performance parameters. From these insights,
we model the user behavior in a P2P live streaming
system through a Bayesian network. This network is able
to learn a user behavior and allows inferences to predict
user activities under given conditions. Estimations pro-
duced by this network can be used for making P2P live
streaming systems aware of users’ behavior and even-
tually improve their performance. Several application
might be considered from the departure anticipation of
individual users to the estimation of the global population
and performance parameters such as the streaming qual-
ity. We evaluate the accuracy of this model through
simulations and present its applications for the perfor-
mance improvement of P2P live video streaming systems.

This work is a revised and extended version of our
previous work [1]. Additional proposals cover the
enhancement in learning rate which is a significant
improvement over the previous work, and applications
to the estimation of popularity, arrival and departure
rates. Furthermore, extended results of the network
evaluation over different behaviors and comparisons with
non-contextual models are given.

The remainder of the paper is organized as follows.
Section 2 presents works related to user behavior model-
ing. In Section 3, we perform a synthesis of user behavior
measurements for the identification of user behavior
metrics and their relationships. It is followed by the
presentation of our user behavior model. In Section 4,
we present the simulation scenarios and results for the
validation of our network. Section 5 illustrates the use of
our proposal in challenging applications. Finally, Section 6
gives conclusions and future directions.

2. Related work

User behavior in P2P systems has been addressed in
several works. These works analyze and model user
behavior in all sorts of P2P applications.

Xu et al. [2] present a content-based partitioning
scheme to identify P2P applications. Doulamis et al. [3]
propose clustering based on the semantic proximities
among P2P users. It is aimed at maximizing the prob-
ability of a user to locate the content into its own cluster.
Leonard et al. [4] apply principles from classic graph
theory to study the partitioning behavior in P2P systems.
They show that P2P systems are resilient against peer
isolation under many practical conditions. They also
propose models for improving this resilience. Feng et al.
[5] model user behavior in P2P file sharing systems with
the help of two-years logs from a real network. Their work
is aimed at generating realistic user behaviors for P2P
simulations.

Nonetheless, all the above-mentioned works are not
valid for P2P live streaming systems, since these latter
operate under different conditions. For example, each
packet in a P2P live streaming system has a playback
deadline which does not exist in P2P file sharing systems.
Moreover, users actively interact with the content they
download, which is not the case in P2P file sharing
systems.

Concerning the P2P video streaming context, several
works [6–10] analyze user behavior through traces col-
lection and measurement to get insights into it. A few
others [11,12,10,13] also model some aspects of the user
behavior. We briefly discuss these latter, since they are
close to our work.

Through a measurement study, Tang et al. [11] observe
that a user’s elapsed time in a session is positively
correlated with his remaining time in that session. Based
on this characterization, they propose that a peer with
more elapsed time should be chosen as an upstream.
Wang et al. [12] use a similar method for the identifica-
tion of stable peers. They put those peers in the backbone
to reduce the impact of churn. This approach has some
limitations: it does not consider any contextual informa-
tion that impact a user behavior. Moreover, all those peers
that have recently joined the system are considered
unstable, which is not always the case.

Liu et al. [10] study the user behavior in a P2P live
streaming system. They observe that peers stability and
their bandwidth contribution ratios are impacted by
factors such as the streaming quality. They propose
models for predicting the longevity and bandwidth con-
tribution ratios of peers. Nonetheless, there are other
parameters such as population and delay, which are also
important for a user centric design and that are not
considered in their work.

A machine learning approach is proposed in [13]. It
enables peers to actively detect the load in the uplink of
source peers and alert their clients to replace their source.
This approach only considers the upload bandwidth con-
tribution as a metric of the user behavior, while others
such as stability of the provider peers are also important
for the performance.

In our earlier work [14], we proposed a non-contextual
approach for estimating the current session duration of a
user from the history of its past sessions. It includes
estimators based on Exponential Moving Average (EMA)
and Bayes’ rule. Moreover, a proactive mechanism of
switching to a new upstream peer before the anticipated
departure of the current upstream peer was proposed.
The limitation of this work consists of its non-contextual
modeling which does not take into account the external
impacting factors.

One common limitation with the above-mentioned
works is their lake of consideration of all user behavior
metrics and their influential factors. Moreover, they are
intended for specific uses such as estimation of band-
width or stability. P2P networks highly rely on users and a
user-aware design requires the ability of estimating all
user activities. Therefore, in [1], we proposed a Bayesian
network model that takes into account all the known
variables related to user behavior. However, a limit of this
model lies in the long learning time required by the
network before being able to accurately estimate user
behavior metrics. In this paper, we propose improvement
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to our previous work to minimize the learning time of the
network. In addition, we present its extended evaluation
results over six kinds of different behaviors. We also
explore its applications to system-level variables such as
popularity, arrival and departure rate which are impor-
tant for understanding the system dynamics.

3. Modeling user activities

User activities in P2P live streaming systems have
impacting relationships with the network and contextual
conditions. To understand these relationships in detail,
we collect and synthesize large-scale measurement stu-
dies over user behavior. First, we present an analysis of
collected measurements to get insights into user behavior
and then we describe our Bayesian network.

3.1. Insights from measurements

An abstract view of the synthesized measurements is
shown in Table 1. It is evident from this table that online
duration is not studied by most of the measurements. It is
mainly due the fact that most of the measurements are
intended towards P2P systems and currently deployed P2P
systems build a separate overlay for each channel. Therefore,
differentiating online and session durations in this type of
systems does not make sense. On the other hand, session
duration, channel popularity and arrivals/departures have
received more attention. Concerning download and upload
behavior of peers, they are measured in most of the P2P
systems. However, in C/S and telco-managed IPTV systems,
the clients do not relay content to other clients and hence
they have no upload contribution.

The most interesting insights from these measurement
reveal the relationships of user activities with each other,
Table 1
Regression of bankruptcy announcement returns on various control variables.

Ref. Type System Period

[15]

P2P

PPLive

Feb. to Nov. 2008

[16] Apr. to Dec. 2006

[12] Nov. 2006 (about 28 hours)

[6] 2006 -07

[17] Jun. 2006

[8] PPStream unknown

[18] Zattoo Mar. 2008 (2 weaks)

[19]

Cool-Streaming

Mar. 2005 (4 days)

[7] Oct. 2006 (1 day)

[20] Sep. 2006 (1 day)

[21] Unknown 2006 (11 hours)

[22] GridMedia Jan. 2006 (4.5 hours)

[10] UUSee May to Jun. 2008 (5 days)

[11]

CCTV

Feb. 2005/Jan. 2006 (2 pop.

events)

[11]

C/S

Oct. to Jan. 2004 -05

[23] Akamai Oct. to Jan. 2003 -04

[24] Unknown 2002 (90 days)

[25]

IPTV Telco-Managed

Apr. 2008 (6 days)

[26] Jun. 2008 (1 month)

[27] May to Oct. 2007
with the contextual conditions and with network para-
meters. These relationships are in the form of dependen-
cies and once extracted they are helpful for modeling the
user activities. We depict them in Fig. 1. The influence of
one element on another is shown through a directed edge.
The variables shown in this graph are divided into three
categories: (1) user behavior metrics; (2) environmental
impacting factors and (3) network performance para-
meters. User behavior metrics are the components of user
behavior. Environmental impacting factors are those vari-
ables which are not components of user behavior but
come from the environment and have an impact on user
behavior metrics. Network performance parameters are
part of the network and they have impacting relationships
with user behavior metrics. These parameters determine
the performance of the system and hence are useful for
carrying out decisions. We discuss these relationships in
light of the observations presented in measurement
studies. We take each dependent variable and explain it
with all its impacting ones.

Arrival rate: Time-of-day has an impact on the channel
joining rate of users. Users’ arrival rate into a channel
increases in peak usage time [27]. An increase in arrival
rate is observed in the beginning of programs. However,
this increase is smoother than the departure. Since pro-
grams are scheduled according to time therefore time-of-
day has an impact on arrival rate.

Departure rate: Departure rate is impacted by both
time-of-day and content type. An increase in departure
rate is reported in peak hours particularly towards the
end of programs [27,6]. Unlike arrivals, departures hap-
pen in batches where users leave the channel simulta-
neously. Moreover, users switch channels during breaks.
Since programs ending and breaks are normally sched-
uled at fixed times, time-of-day has an impact on the
Method Metrics

OD SD CP A/D D/U

Crawler

| | |
| |
| | |

Passive/Crawler | | | |
Passive | |
Crawler | | |

Logs

| | |
| | |
| | | |
| | | |

|
| |
| |
|

| |
| | |
| | |

| | | |
| |
| | |
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Fig. 1. Components of user behavior and related metrics.
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departure rate. The behavior of batch departures is also
dependent on the type of the content. For example, Hei
et al. [6] observe batch departures in a movie channel but
they do not find this behavior in another (unspecified)
popular type of channel.

Channel popularity: Channel popularity also called
population is impacted by time-of-day, arrival rate and
departure rate. According to Qiu et al. [25], popularity is
diurnal which means that time has an impact on popu-
larity. Similarly, a higher arrival rate than the departure
rate leads to an increase in popularity.

Session duration: Session duration is impacted by the
elapsed time in a session, streaming quality, popularity,
type of content, time-of-day and day-of-week. A positive
correlation is observed between elapsed session duration
and remaining amount of session duration of a user
[11,27]. Liu et al. [10,28] report a strong correlation
between the initial streaming quality and session dura-
tion of a user. Session duration is also impacted by
popularity. Users stay longer while watching popular
programs as compared to unpopular ones [10,6,28]. Simi-
larly, content type impacts the session duration. Shorter
session durations are reported for news and music chan-
nels while documentaries and kids channels promote
longer sessions [27]. Finally, Liu et al. [10] reveal that
session duration has a strong correlation with time-of-day
but no correlation with day-of-week. However, Veloso
et al. [24] observe an impact of day-of-week on the
session duration.
Surfing probability: Cha et al. [27] observe that the
channel popularity and the type of content impact the
surfing (channel browsing) probability of a user. It
increases for less popular channels and specific genre like
news and music. Studies [27,25] observe diurnal patterns
in surfing mode that occur during breaks and at the end of
specific TV programs. From this, we can deduce an impact
of time-of-day over surfing behavior.

Failure rate: The departure of a user from a channel
before the video player becomes ready is called failure.
Users’ arrivals and departures impact failure rate. It has
been found to be strongly correlated with join rate and
departure rate [7,29].

Playback delay: Playback delay is the lag between the
generation time of a packet and its playback time at the
viewing peer. It is increased with an increase in popular-
ity and arrival/departure rates [8].

Streaming quality: Streaming quality is impacted by
arrival and departure rates. Departures certainly impact
the streaming flow to the dependent peers, but high
arrival rates also have the same impact because peers
choose randomly their provider peers, which may have
joined recently and have not received sufficient video
chunks to provide to other nodes. This is also affirmed by
[10] that reveals that streaming quality degrades under
flash crowds at peak times.

Bandwidth contribution ratio: A user contributes more
to the upload bandwidth of the system if he receives a
good streaming quality initially. Li et al. [29] observe a
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strong correlation between the average bandwidth con-
tribution ratios and the instantaneous popularity.

Partners discovery: An increase in popularity makes the
partners finding job easier because of the availability of
more peers in the system. Peers face difficulty in finding
partner peers while watching less popular channels
[19,16].

3.2. A user behavior model

From the synthesis given above, we understand that
user behavior has several components and each of them
has a relationship with other components, contextual
environment and/or network parameters. The goal of
our model is to be able to estimate the value of any
variable of interest from other variables.

Bayesian networks suit well in this kind of situation.
First, they are able to model such a domain and allow
multiway inferences in order to estimate different vari-
ables of interest through the same model. Second, they
are expressive for modeling real-world problems. Finally,
they model well the relationships of causes and effects
which is the case here.

3.2.1. Bayesian networks

A Bayesian network (BN) is a Directed Acyclic Graph
(DAG) of vertices and edges. Vertices, called nodes,
represent random variables and directed edges show
informational or causal dependencies among variables
Time-of-day Conte

Arrival
rate

departure
rate

Popularity

Streaming
quality

Fig. 2. The proposed Bayesian n
[30]. A Bayesian network models the quantitative
strength of a relation between two variables and allows
to update the probabilistic belief about this relation as
new observations become available. A node with a direc-
ted edge towards another node is called the parent while
the other node is called the child node. Bayesian networks
simplify the joint probability distribution of variables
through requiring only the set of parent variables. A node
is conditionally independent from all other nodes given
its parents. The joint probability distribution P of variables
X1 . . .Xn in a Bayesian network can be written in the form
shown in (1), where

PðX1, . . . ,XnÞ ¼
Yn

i ¼ 1

pðXi9parentsðXiÞÞ ð1Þ

The network structure can be constructed by an expert
or learned from data. Similarly, the quantitative strength
of relationships among variables, called parameters, can
be assigned manually or learned from data. In our work,
we construct the network manually and let it learn its
parameters from the data.

3.2.2. Proposed model

The Bayesian network we propose is depicted in Fig. 2.
The structure of our Bayesian network is a direct deriva-
tion from the causal graph shown in Fig. 1. The minor
adjustments are as follows. We omit day-of-week from
this network because it was studied only in two measure-
ments with contradicting observations. We do not assign
Session
duration

nt type Elapsed time

Delay

Bandwidth
contribution

ratio

etwork for user behavior.
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any node to surfing probability and failure rate since both
surfing and failure result in short sessions, which can be
represented by the session duration variable. Similarly,
partner discovery has been excluded since it is relevant
only in mesh-based systems and it can be easily added if
required.

3.2.3. Nodes’ description

Our Bayesian network contains both discrete and
continuous variables. We represent discrete variables
though rectangles and continuous ones through ellipses.
A discrete variable has a state for each possible outcome.
We determine the number of these states through the
help of measurement studies. Cha et al. [27] analyze
several content types and from their observations we
group them into three types namely, reality, fiction and
sport. Elapsed time of a user can help in deciding whether
a user is in surfing or viewing mode. We deduce the
number of state for elapsed time from [27], which states
that the channel holding time in surfing mode can last up
to 2 min. Therefore, we choose binary states for elapsed
time: less than 2 min (an unstable peer in surfing mode)
and more than 2 min (a stable peer in viewing mode).
Since time of the day is discretized, its number of states
depends upon the discretization interval. To choose the
most appropriate value for the discretization interval, we
perform simulations and illustrate them in Section 4.2.2.
All the remaining nodes are continuous and they are
Gaussian distributed.

4. Validation

In order to validate our model, we perform numerous
simulations. Such simulations require the injection of
realistic user behavior traces based on users’ logs or
synthetic models to precisely evaluate how our Bayesian
network behaves. However, if the measurement studies
presented in Section 3 provide global models, they face
difficulties in establishing the link between all traces and
individual users due to dynamic IP addresses and peer
identifiers, presence of network address translations
(NAT) and privacy rules. Moreover, the individual user
behavior does not follow the global behavior and a global
model is not suitable for dealing with users having
different interests and habits. This is why, given the lack
of individual traces and accurate individual models, we
proposed a new model based on a semi-Markovian
process that precisely abstracts the behavior of a user of
a P2P video streaming service. Before illustrating the
simulations, we briefly discuss this model. For further
details about this model please refer to [31].

4.1. Workload model

Inspired from the qualitative description of fictional
characters called personas in [32], we propose a formal
semi-Markovian model that precisely emulates the beha-
vior of P2P live video streaming users. We assume six
personas namely, Johnatan, Emma, Stephan, Anna, Peter
and ELlen. We shortly denote them by fJ,E,S,A,P,Lg respec-
tively. We modelize each user with a non-homogeneous
semi-Markovian process. It means that the state of a user
(online or offline for instance) at a given time not only
depends on its state at the previous time as in any
Markovian process but also on the time it spends in this
state and on the global time of the process. Such kind of
process fits well with the video streaming context
because previous studies [10,11] show that the behavior
of a user vary with respect to the time of the day and the
time spent online. For example, watching longer or more
often in the evening than in the morning and the impact
of elapsed time on the remaining one.
4.1.1. The abstract individual model

We make the following assumptions:
1.
 We only consider mono-channel video streaming
applications. Consequently, we define two states
fX1,X2gwhere the semantics are respectively the user’s
online presence and its offline presence;
2.
 We assume a cyclic behavior on each day.
Consequently, we consider the process global time t 2

Nþ as a day discretized in one-minute intervals
ft1 . . . t1440g;
3.
 In order to be consistent with [33–36] and as log-
normal laws are commonly used to model slow fading
phenomenon, we consider that the transition from
state X1 to state X2 is controlled by a log-normal law.
As an individual user watches longer in certain time-
of-the day, the mi

tðdÞ and si
tðdÞ depend on the persona i,

on the kind of content d, on the global time of the
process t and on tX1

the time spent in the state X1;

4.
 Since Poisson laws are widely used to model arrival

processes, we consider that the transition from state X2

to state X1 is controlled by a Poisson law which is
consistent with [33,35]. As an individual user has
habits about its watching time, the parameter li

t

depends on the persona i and on the global time of
the process t.

The transition probability from state X1 to state X2 is
the probability to be disconnected after a given time tX1

spent in the state X1 :

PðXðtÞ ¼ X29X1,tX1
Þ ¼

Z tX1

0

e�ðlog x�mi
t ðdÞÞ

2=2:ðsi
t ðdÞÞ

2

x:si
tðdÞ:

ffiffiffiffiffiffi
2p
p dx

where mi
tðdÞ and si

tðdÞ are the parameters of the log-
normal law with respect to the persona i, the global time
t and the content d. The transition probability from state
X2 to X1 is the probability of being connected at a given
time-of-the-day. We model this phenomenon with a
Poisson law and, as we are interested in the arrival of a
single user, k¼1. Consequently,

PðXðtÞ ¼ X19X2Þ ¼ e�l
i
tli

t

where li
t is the parameter of the law with respect to the

persona i and the global time t. In order to instanciate the
parameters of the model, we base them on the personas
defined by [32]. In the sequel, we denote these personas
with fJ,E,S,A,P,Lg, namely Johnatan, Emma, Stephan, Anna,
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Peter and ELlen. All the parameters and their values are
summarized in Table 2.

4.1.2. Arrival model

In conformity with measurements [37,34,35,38], we
define five time periods in a day, namely morning, noon,
afternoon, evening and night. For each persona and each
time period, we set the li

t parameters of our model for
a one-minute time step (see the second part of Table 2).
We choose those values such that it reflects the watching
habits of each persona. For instance, Johnatan watches
more often in the evening than in the morning. Moreover,
the sum of these values is lesser than 1, meaning that a
given user does not join the network every day. Finally,
the sum of the li

t approximate the global evolution of a
population.

4.1.3. Session duration model

Each persona watches television each day for an average
time as given in Table 2. According to [32], J and A are very
regular, E and L are regular, P is irregular and S is very
irregular. This regularity is given by the variance s2 ¼ x=k

where x is the total time session per day (k¼1 for very
irregular to 4 for very regular). The third part of Table 2
gives the mean and the variance in minutes of the total
online presence for each persona i as well as the mi and si

parameters of their log-normal laws.
Table 2
Parameters of the model.

Parameter Persona

Johnatan (J) Emma (E) Stephan (S)

Features defined by [32]

Age 17 25 33

Interests Sports and serials No matters News and s

Watching time per day 2–3 h 1.5 h 1.5 h (high

Watching time habits Evening, night Almost at night Noon, after

Socioprofessional Student Store clerk Executive

li
t values on one-minute intervals with respect to persona i and global time t

From 4 a.m. to 9:59 a.m. 0.00125 0.00125 0.00125

From 10 a.m. to 3:59 p.m. 0.00375 0.00375 0.0075

From 4 p.m. to 6:59 p.m. 0.00375 0.00125 0.00125

From 7 p.m. to 10:59 p.m. 0.0075 0.005 0.00375

From 11 p.m. to 3:59 a.m. 0.00375 0.00625 0.00375

mi and si values on a full day with respect to persona i

Watching duration per day 150 90 90

Variance 37.5 30 90

mi 5.0098 4.498 4.4943

si 0.0408 0.0608 0.1051

Sharing Mi
t of the total online time with respect to persona i and global time t

From 4 a.m. to 9:59 a.m. 0.05 0.05 0.05

From 10 a.m. to 3:59 p.m. 0.1 0.05 0.2

From 4 p.m. to 6:59 p.m. 0.1 0.05 0.1

From 7 p.m. to 10:59 p.m. 0.4 0.2 0.4

From 11 p.m. to 3:59 a.m. 0.35 0.65 0.25

Values of the interest coefficients yi
d for persona i and content type d

Fiction 1 1 0.3

Reality 0.5 1 1.7

Sports 1.5 1 1

Proportion of each persona in the network

0.182 0.168 0.177
As [32] solely give a watching duration per day for
each persona, we need to define mi

tðdÞ and si
tðdÞ from mi

and si. Furthermore, the session time is correlated with
the interest of the watcher in the content. To this end, we
assume that the session time at a given time period (local
session time) is a sharing of this watching duration per
day multiplied by an interest coefficient defined from
both the watching time habits and the socioprofessional
group of each persona. The fourth part of Table 2 gives
this sharing for each persona according to the time period.
The values of these parameters are arbitrary defined but
reflect the preferences of the personas. The fifth part of
Table 2 gives the interest coefficient yi

d for each persona i

with respect to each content type d. We choose the values
of the coefficients such that their mean equals 1 which
represents the fact that, in average, the expected session
duration follows the previous distribution. Consequently,
we defined mi

tðdÞ to si
tðdÞ as follows:

mi
tðdÞ ¼ mi �M

t
i � y

i
d

si
tðdÞ ¼ si �M

t
i � y

i
d

4.1.4. Population model

As an individual model, a non-homogeneous semi-
Markovian process is instantiated for each user in the
Anna (A) Peter (P) Ellen (L)

46 58 69

ports Serials News and reports Talk-shows and reports

D) 1.5 h 1.5 h 2 h
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network. Consequently, we propose to set the proportion
of the personas according to the data given by the French
National Institute of Statistics and Economic Studies
(INSEE). From these data, the proportion of a given
persona type is given in the sixth part of Table 2.
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4.1.5. Model validation

In order to use such individual models, we need to
validate that their global behavior fits with those estab-
lished in the literature. We set 10,000 users with a
persona according to our population model given in
Table 2. We simulate three days with a realistic mixed
content each day and we compute the average behavior.

Fig. 3 represents the frequency of the session durations
of the population. It presents a multimodal distribution
where each mode highlights a different behavior with
respect to a given content and a given interest coefficient.
The distribution shows a high number of short sessions
and a long tail of longer session which is consistent with
the log-normal model of [39].

Fig. 4 compares the cumulative distribution function
(CDF) of the session duration of our model to the global
models proposed by [35,36,39]. We can notice that our
model fits well with the global model of [35] and have the
same shape than the others. Indeed, Jensen–Shannon
divergence and the symmetric Kullback–Leibler diver-
gence with [35] is only 0.091486 and 0.48833 respec-
tively. However, [36,39] present more very short sessions.
An explanation is that the authors focus on reality shows
and soccer where the users watch very short scenes (cues
or goal kicks) whereas we consider a realistic mixed
content channel.

Fig. 5 represents the population throughout the day. It
shows that our model is consistent with the global model
presented in [10,16,39]: there is a low population in the
morning, a first peak at noon, a decrease in the afternoon, an
apex in the evening and a low population at night. The
sudden changes in the population represent flash crowds, a
common phenomenon in P2P streaming systems. Thereby,
our workload model can be used to validate our Bayesian
network.
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4.2. Simulations results

We use Matlab and Bayes Net Toolbox1 extension for
simulations. In this part, we illustrate the simulation sce-
narios, determination of the number of states for time-of-
day and the network accuracy in two deployment types.

4.2.1. Simulation scenarios

The simulation scenarios represent two network
deployments. The first one, termed as a global scenario,
assumes a central entity for the deployed P2P system. The
central entity will have all the required information
needed for the network such as time, type of content,
arrival departure rates and popularity. The network thus
learns a global behavior of users.

The second scenario is called the local one and con-
siders an individual deployment of a Bayesian network in
each peer. In the local scenario, although the local
information is available, the global parameters that are
arrival/departures and popularity need to be provided to
1 http://code.google.com/p/bnt/.

http://code.google.com/p/bnt/


Table 3
Simulation parameters.

Parameter Value

Total population 1000 users

Simulation duration 40 days (global scenario)

200 days (local scenario)

Content type Reality, fiction and sport

Content duration 2 h

Inference algorithm Conditional Gaussian

Learning algorithm Maximum likelihood learning

Time-of-day discretization interval 1 h (see Section 4.2.2)
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the network. Since these parameters are only required
soon after joining, it can be provided through a centra-
lized server, which already exist to support other func-
tions such as tracking peers. Moreover, decentralized
aggregation protocols [40–42] based on a tree structure
or a gossiping approach can also be used to collect this
information.

Simulation parameters for these two scenarios are
given in Table 3. We simulate a total of 1000 individual
users. Users’ traces spanning over a 40-days period are
used in the global scenario while those over 200-days are
used in the local one. The content type is changed after
each 2 h duration. We use the Conditional Gaussian
algorithm for inference and Maximum likelihood learning
algorithm to train the network. The discretization interval
for session duration is 1 h. First we present how we
choose this interval and then we show the results for
the two scenarios.

4.2.2. Time discretization

As we discussed in Section 3.2.3, the number of states
for the discrete variable time-of-day and its discretization
interval cannot be deduced directly. Choosing a smaller
interval enables the network to encode time with finer
granularity, hence increasing its accuracy. However, on
the other hand, it increases the number of states of time-
of-day leading to a larger size of its own CPT and all its
dependent variables. Consequently, the required learning
time increases, since the network should get data for all
combinations of these states in order to be trained. In this
situation a tradeoff between accuracy and learning time is
required. To find this tradeoff, we perform simulations
with different time intervals.

We use the same data set in all simulations. To test
different intervals, we ask the network to forecast the
session duration of each user when he/she is online. Since
session duration has the maximum number of relation-
ships with other variables in the network, its estimation is
the most complex one. In the beginning the network has
random parameters and it does not have any real knowl-
edge of the behavior it is associated with. Users from
different personas are let to join the system. On the arrival
of a user, the network is asked to predict the session
duration of that user, given all other variables such as
time-of-day, content type and population. After the
departure of the same user, the observation with real
session duration is provided to the network for learning.
In this way, the network improves its knowledge as the
time passes on. At the end, actual session durations are
compared with the estimated ones. From this comparison,
the overall Root Mean Square Error (RMSE) and the
learning time are computed. The learning time is the time
a network takes after which the variation in RMSE over
a ten days period does not exceed a given threshold.
We have chosen 0.95 min as a threshold value, which is a
small variation in our case. The accuracy of the network is
analyzed from the overall RMSE of only those estimations
which are produced by the network after the end of the
learning period.

The obtained results indicate that our network per-
forms differently in the two scenarios. Since the network
deals with datasets of all users in the global scenario,
it gets a large amount of data to learn the behavior.
It becomes hard to determine the duration in which the
network learns. For instance, the RMSE with different
intervals from day 2 to 40 only varies between 17.33 and
17.69. These results make the discretization interval
invariant regarding the global network performance, since
the error is large all the time and there is no notable
difference in the learning time over different intervals.

By contrast, results from the local scenario help in
choosing the discretization interval. Time-of-day discre-
tization shows a significant impact on the estimation
accuracy and learning time in this scenario. We depict
the learning time versus different discretization periods in
Fig. 6a. Similarly, we show the RMSE after learning of the
same networks in Fig. 6b. It is evident from these two
figures that increasing the discretization interval
decreases the required learning time, while increasing
the error. The best tradeoff value we choose is 60 min
interval, requiring 24 states of time-of-day. The average
learning time for this interval is about 40 days with
an average RMSE of about 7.58 min for all personas.
From here onward, we use this discretized value in all
simulations.

4.2.3. Global case

Our network contains two types of variables. First,
peer-level variables that concerns an individual user or
peer such as session duration and bandwidth contribution
ratio. Second, system-level variables such as arrival/
departures rates and popularity. Here, we only evaluate
the performance of our network over the estimation of
session duration.

Actual session durations versus the estimated ones are
depicted in Fig. 7 over a period of 10 days. It is clear from
the plot that our Bayesian network over- and under-
estimates about the same number of sessions between 0
and 40 min interval. Moreover, estimated sessions uni-
formly occupy the ½0�40� � ½0�40� square indicating a
poor accuracy.

On the other hand, the network under-estimates ses-
sions having lengths between 40 and 100 min. Although
under-estimating a session duration does not prevent
from anticipating the user departure, it induces a strong
overhead for any networking mechanism that rely on it.
Such a result is due to the fact that the network learns an
average behavior from a global trace, which does not help
in distinguishing the elements of each user, resulting thus
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in shorter or longer sessions for a user of a particular
persona type.

4.2.4. Local case

In this scenario too we evaluate our Bayesian network
over the estimation of session duration. We apply the
traces of individual users of all the six personas to the
network and measure its accuracy. We depict the evolu-
tion of error and learning in Fig. 8. Here, the RMSE is
averaged for all users of each persona over 10 days period.
The network shows a maximum error for all personas in
the beginning, which is reduced as the time passes on.
Understandably, the network learns from observations
and minimizes the error. To avoid the redundancy, from
here onward, we show results only for persona L in the
local case, since the network shows a very similar beha-
vior for all personas.

We also show a scatter plot of some representative
actual sessions versus estimated ones belonging to 10
users of persona L from the 41st day onward in Fig. 9. This
plot shows a good precision as compared to the global
network, with a slight tendency to over-estimate short
sessions and under-estimate long ones. All these results
indicate that our network is more accurate in the local
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case and its performance is consistent over different kinds
of behavior.

4.3. Discussion

It is clear from the above-given results that our
Bayesian network does not perform well in the global
scenario when the network learns from mixed behaviors
and it is asked to predict a peer-level variable. Moreover,
for every peer to query a central entity for the estimation
of a variable leads to scalability issues. However, this kind
of a deployment can be useful for resource allocation at
the provider side through estimation of system-level
variables such as arrival/departure rates and popularity.
We explore the estimation of these variables latter in
this paper.

On the other hand, our network shows a good accuracy
over the estimation of peer-level variables such as session
duration in the local deployment. Nevertheless, the require-
ment of 40 days learning time emerges as a major limit in
the local case, since the network cannot estimate accurately
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during this initial period. Therefore, next we propose to
reduce this learning period to an acceptable level.
4.4. Increasing learning rate

To enhance the learning rate, we use a combination of
a profiler and trace collection from different users of the
same persona type. We assume that a profiler initially
asks the user about his preferences and then classifies
that user into a persona class. To learn the behavior, the
Bayesian network of this user then uses the traces of all
other users of the same persona class. This mechanism
increases the number of observations and thus the net-
work learns quickly. However, the accuracy of the profiler
also becomes important. Profiler modeling is out of the
scope of this paper, therefore we assume six levels of
accuracy for the profiler. Each level corresponds to the
amount of percent error that results from the wrong
classification of a user. We simulate 50 days for all users
of persona L.

We show the RMSE taken over 3-days period in Fig. 10.
One can notice that the error is minimized far quicker
than individual traces. The learning time is determined
from this error evolution. It is the time after which the
variation in error does not exceed a certain threshold. To
be consistent with the previous method, we set the
threshold value to 0.95 min.

Fig. 11a depicts the learning time for each considered
profiler. It shows that whatever the error of the profiler is,
the learning time remains independent of it and happens
to be 3 days for all of them. On the other hand, the
profiling error has a strong impact on the estimation error
of the network. It is clear from Fig. 11b, which depicts the
overall RMSE of the network with each considered profiler
over all operational days, excluding the first three training
days. Comparing these results with the individual trace
based learning in Fig. 6, indicate that the profiler accuracy
under 10% error will be acceptable in this approach.
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sification error.
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This approach shows a significant improvement over
the previous one, where initially a 40 days of traces were
required on average for learning the behavior while now
it has been reduced to 3 days. Collecting individual traces
incurs an overhead, however, it can be minimized by
requiring a peer to collect the traces once after joining.
Moreover, a limit on the collected amount of traces can be
put on each peer, since once fully trained, no extra traces
are required to accelerate the learning process. After this
initial duration of a new comer, only the local traces are
sufficient to update the knowledge base of the network.

This learning period can be further reduced and the
requirement of collecting traces of the similar behaviors
can be eliminated through the combination of pre-trained
Bayesian networks and a classifier. We depict the general
idea in Fig. 12.

In this approach, first user classes (personas) must be
identified. It might be done through analyzing existing
traces of users collected from a P2P live video streaming
system in function. These traces are divided into datasets,
each of them corresponding to a user class. A dedicated
BN is trained from dataset of each group and a classifier is
learned from all datasets of all groups. As a user arrives,
the classifier classifies him into a group and the appro-
priate BN is assigned to that user. All the required
estimations are then carried out by the assigned BN
throughout the online period of the user.

We do not consider dynamic behaviors in which the
current behavior of a user may be different from the past
one. In that case relevance feedback mechanisms [43] can
be used.

5. Applications

Our Bayesian network can perform a multiway infer-
ence that makes possible the estimation of all modeled
variables. These estimations have several applications
such as anticipation of churn, users’ arrival/departure
rates, stability and popularity dynamics. Here we evaluate
our Bayesian network over the anticipation of users’
departures, popularity dynamics, and arrival/departure
rates. In case of departures anticipation, we also
compare the results of our model with those of two other
estimators.

5.1. Departure anticipation

The current session duration of a user can be predicted
through our network, which determines the departure
time and stability of a user. This estimation can help to
optimize a P2P live streaming system for improved
performance. In [14], we proposed a non-contextual
approach to anticipate a peer’s departure. This approach
does not take into account any contextual information.
Here, we compare the accuracy of our Bayesian network
to those non-contextual estimators over departure antici-
pation. The non-contextual approach provides different
estimators based on EMA (Exponential Moving Average)
and Bayes’ rule (BR). We briefly discuss these estimators.

5.1.1. EMA and BR

EMA is a statistical technique that estimates an aver-
age from a set of values by giving exponentially decreas-
ing weights to older values. As given in (2), ESt is the
current session duration, St�1 is the actual duration of the
previous session, ESt�1 is the length of the last estimated
session and a 2 ½0;1� is a weighting factor:

ESt ¼ a� St�1þð1�aÞ � ESt�1 ð2Þ

This estimator was further extended through reducing
the estimated session by 20% for increasing the number of
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successful anticipations. This estimator produced better
results than the normal one, therefore here we choose the
same for comparison. In the sequel, we will refer to it
by EMA.

The second non-contextual estimator is based on the
Bayes’ Rule (BR). It is a probabilistic approach that enables
the estimation of a peer’s current session duration from
observations of past sessions. Let T 2 R be the maximum
possible session duration of a node A. We discretize T in k

equal time interval ft1,t2 . . . tkg such that t1ot2 � � � tk�1otk.
For each time interval ½ti,tiþ1� we define a binomial variable
ai. The prior probability of the event fj, meaning that the
next session duration Si will be at least equal to tj, can be
modeled by the Dirichlet density function as given in (3a)
where aj is the number of observations when SiZtj. The
estimated prior probability of ðSiZtjÞ is given by (3b) where
9O9 is the set of already observed session durations. Let us
notice that the variables a are not independent. So we
define a mechanism to update the /aS vector. After
observing a set O0 of some new session durations, the
posterior probability of a session duration Si to be at least
equal to tj is computed through (3c) where ojDO and 9oj9 is
the number of observations where SiZtj.

f ðf1 � � �fk�1 j a1 � � �akÞ

¼
Gða1þa2þ � � � þakÞ

Gða1ÞGða2Þ � � �GðakÞ
ðfa1�1fa2�1

� � �fak�1
Þ ð3aÞ

f ðfjÞ ¼
ajþ1

9O9þ2
ð3bÞ

f ðfj9O,O0Þ ¼
ajþ9oj9þ1

9O9þ9O09þ2
ð3cÞ

This estimator updates the list of posterior probabil-
ities corresponding to each tj at the completion of each
session. The estimation of a current session duration ti is
performed with Eq. (4) in which the probability threshold
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PTh should be fixed:

tn ¼max
tj

ðf ðfjÞZPthÞ ð4Þ

5.1.2. Comparison metrics

We compare EMA and BR with our Bayesian network
(BN) according to the following metrics. First, we measure
success which stands for the number of times our esti-
mated session duration is less than or equal to the actual
session duration. In this case a client peer is able to
successfully anticipate the departure of its content provi-
der peer and react proactively. Second, we measure the
early reaction time (ERT) for all successful estimations.
This measurement shows how optimal the anticipation is.
Third, we measure the error in terms of RMSE in all cases,
which reflects the overall accuracy of estimators. As
previously, we discuss detailed results of all these esti-
mators in the two deployment scenarios.

5.1.3. Global case

Since the accuracy of EMA and BR changes with
variation in the values of their parameters (a and Pth),
first we evaluate these two estimators through varying
these two parameters and analyzing their success
and RMSE.

We plot the a versus success for EMA and Pth versus
success for BR in Fig. 13. The success of both EMA and BR
increases with an increase in the value of a and Pth

respectively, varying smoothly from 50% to 64% for EMA,
while for BR it reaches from about 11% to 95%.

On the other hand, the RMSE of EMA slightly increases
with an increase in the value of a as shown in Fig. 14.
Here, the error variation of BR is quite interesting. It starts
at the highest for the lowest used threshold, decreases
with an increase in the threshold, reaching to minimum at
0.5 and then starts climbing again. It means that BR over-
and under-estimates sessions by a large margin, resulting
in inconsistent behavior over different probability thresh-
olds. Concerning BN, it produces a 46.17% success with an
RMSE of 19.14 min in this scenario.
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To choose the best parameters of these estimators for
further detailed results and a comparison with the BN, we
set Pth to 0.5 in case of BR, with which it produces the
minimum error while the success varies too much. Simi-
larly, in case of EMA, we set a to 0.9, with which it
achieves the highest success with a slight increase in
the error.
We depict RMSE of all the three estimators in Fig. 15a.
Here, BN generates a slightly smaller error than other
estimators. However, the difference in error of all estima-
tors is quite low and the magnitude of error is high for all.
As shown in Fig. 15b, BR produces slightly better results in
terms of ERT ratios to actual session durations, where a
significant portion of ratios lies near to zero. However,
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ratios are spread over the entire range, which shows an
inconsistency.

Overall, EMA and BR show better results in this scenario,
than BN. Between these two, EMA produces higher success
than BR over the considered values of a and Pth. However,
BR produces better ERT ratios. Hence, none of these esti-
mators emerge as a clear winner in this scenario.

5.1.4. Local case

As we did in the global case, in the local case we evaluate
and compare the accuracy of the three estimators over the
anticipation of peers’ departures. Before discussing results of
BN, we plot the success of EMA and BR over different values
of a and Pth in Fig. 16. Same as in the global case, here too,
EMA shows a slight increase in success with an increase in
the value of a, while BR shows a larger increase in success
with an increase in the value of Pth.

Similarly, the error shown in Fig. 17, evolves in the same
way as in the global case. Concerning BN, it successfully
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anticipates 50% of departures, with an RMSE of 6.5 min.
These numbers show a good accuracy, however, the lower
success arises from the fact that even a slightly over-
estimated session duration results into an unsuccessful
anticipation. The RMSE of BN being quite lower than the
other estimators, we reduce its estimation by 20%, as we did
for EMA, to lower these slightly over-estimated values. As a
result, the success reaches 84.4%. On the other hand, the
RMSE also increases reaching up to 8.2 min. However, it is
still far smaller than those generated by EMA and BR.

To further compare EMA and BR with BN, we choose
their parameters with the best results. Here both a and Pth

are set to 0.9. The average RMSE over 10 days period for
each persona is shown in Fig. 18. Here, one can notice that
BN consistently produces the least error among all esti-
mators, while EMA and BR not only produce larger errors
but they are also not consistent over different personas.
For instance, BR produces an RMSE of just under 40 for
persona ‘J’, while under 20 for ‘S’. Similarly, in the case of
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EMA, it remains above 30 and around 15 for the same
personas respectively. By contrast, BN consistently pro-
duces an RMSE of less than 10 after training.

We also depict the ERT ratios of all the three estima-
tors for all personas in Fig. 19. Here, again BN produces
the lowest ratios consistently showing a good accuracy,
while BR and EMA produce larger ratios spread over all
the range. These results indicate the inefficiency of non-
contextual models since they struggle to accurately esti-
mate sessions of the same user with consistency. For
instance, ratios of EMA show two groups, one around 0.2
and another around 0.8. Similarly, BR has a group of small
ratios, then another one in which most of the ratios lie in
the range of 0.6–0.9. By contrast, BN consistently pro-
duces smaller ratios indicating a good accuracy over all
personas.

Looking at the consistency over different personas,
again BN shows quite similar results for all of them. On
the other hand, BR is highly inconsistent while EMA
shows a better similarity but its success is far lower than
BN and its errors are higher. Clearly, all these results show
that BN outperforms EMA and BR in the local case.
5.2. Estimation of system-level variables

As a second application of our Bayesian network, we
show how it can be used as an indirect measurement of
the network size and dynamics. Being able to anticipate
the network state could help in system dimensioning and
especially flash crowds management. This section only
gives a proof of feasibility of this kind of estimation and
obviously further investigations would be required to
fully validate it. Especially a direct comparison with
protocols dedicated with such an objective would be
necessary to estimate the relative performance of our
indirect measurement but such a work is out of the scope
of this paper.

Churn [44] in P2P networks is the independent arrival
and departure of users. It has a strong impact on the
performance of P2P live video streaming systems. A high
arrival rate leads to failures and early departures from
users. It is due to the random joining mechanism where
newly arrived peers rely on other peers who have also
recently joined the system and have not received suffi-
cient amount of stream to transmit. Consequently startup
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delays are increased. High departure rates also disrupt the
stream to downstream peers. Therefore, the collective
behavior of user arrivals and departures called churn is
important towards the optimization of P2P streaming
system.

The number of arrivals and departures alone cannot
accurately determine the impact of churn on the system.
The size of the system or population should also be
considered. Our Bayesian network is able to predict these
three variables from which a churn level can be deduced.
Here we only present the estimation of these three
variables. As mentioned earlier, global scenario can be
useful for the estimation of system-level variables, thus
we utilize the same scenario here. To estimate arrival rate,
departure rate and popularity in this scenario, we hide
these three variables and the session duration which is
unknown for each user while he is online. We let our
network estimate them on the arrival of each user and
compare the actual values with the estimated ones.

We depict the RMSE of estimations taken over each
day in Fig. 20a. One can notice that errors for arrival and
departure rates are less than those for popularity. The
reason is that popularity depends upon the arrival and
departure rates and hence an error in these values results
in an increase in the error of popularity estimation. To
further evaluate the accuracy, we depict histograms of
absolute errors for all estimations in Fig. 20b. Here, again
a large portion of estimations lie around zero which is a
good accuracy keeping in mind the four variables in the
network were unknown. To further elaborate these esti-
mations, we also depict a scatter plot of average versus
estimated values for the first 5 days in Fig. 20c. It shows a
good accuracy in the given context.

All these results show that this network can be used
for making decisions at the provider side to allocate
resources dynamically. This will enable a better utiliza-
tion of resources.

6. Conclusion and future perspectives

Due to their architectural models in which the content
is relayed from user to user, P2P video streaming systems
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can largely benefit from the integration of user behavior
in their operational mechanisms. In this paper, we pre-
sented a Bayesian network model, its evaluation and
improvement in its learning process. We also compared
the accuracy of this model with that of non-contextual
approaches.

The Bayesian network we proposed is a contextual
model that includes all the involved variables of user
behavior found in large-scale measurement studies over
live video streaming systems. It is able to estimate any of
these variables which enables to make multiple decisions
towards improving the streaming quality. These variables
are of two types, peer-level which can get different values
for each user and system-level which are the same for the
whole community.

We simulated two deployment scenarios of the Baye-
sian network namely global and local. The former requires
only one network for all users while the latter requires a
dedicated network for each user. We evaluated the
performance of the network in both of these scenarios.
While estimating the session duration of individual users
which is a peer-level variable, the globally deployed
network does not produce accurate results. However, this
network can be useful for the estimation of global para-
meters such as the population size. By contrast, using a
dedicated Bayesian network for each individual user
produces very accurate results for the estimation of
peer-level variables. Concerning the performance of our
network, we proposed an aggregation-based mechanism
that accelerates it learning rate. It showed a significant
improvement in learning period which is reduced from
about 40 to 3 days. We also proposed a blueprint of a
classifier-based approach that can be coupled with
trained Bayesian network to eliminate the need of traces
collection and individual learning.

In order to understand how our Bayesian network
would operate in concrete applications, we used it to
infer an estimation of session duration, population and
arrival/departure rates. The estimation of session duration
aims at anticipating the departure of peers and deter-
mines their stability. It is a crucial factor in P2P live
streaming systems and that is why in this case, we also
compared the results of our network with those of two
other estimators. Results indicate that our Bayesian net-
work outperforms the non-contextual estimators in esti-
mation of the session duration. It shows the suitability of
contextual approach to this kind of problems. Moreover,
results concerning the estimation of system-level metrics
show a good accuracy, which increases the range of its
applications.

This work opens numerous perspectives. Currently, we
are working on the model of a classifier for users’ profil-
ing, which will be first used for enhancing the learning
rate but which also covers more extended applications
such as the building of user-profiled P2P topologies. Such
an application could enable the placement of peers in the
topology according to their profile enabling thus more
efficient topologies. Furthermore, we are working on the
design and implementation of a protocol that based on
the estimations of the Bayesian network, will optimize
the P2P live streaming system for improved users’ Qual-
ity-of-Experience (QoE).
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