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Abstract. Physical agents such as robots are generally constrained intheir commu-
nication capabilities. In a multi-agent system composed ofphysical agents, these
constraints have a strong influence on the organization and the coordination mech-
anisms. Our multi-agent system is a satellite constellation, for which we propose
a collaboration method based on incremental coalition formation in order to opti-
mize individual plans and satisfy collective objectives. This involves a communica-
tion protocol and two coordination mechanisms: (1) an incentive to join coalitions
and (2) coalition minimization. Results on a simulated satellite constellation are
presented and discussed.
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Introduction

In the multi-agent literature, most of the coordination mechanisms either based on norms
[6], contracts [14] or organizations [3,8] involvesoftware agentsor social agents. In such
contexts communications are generally assumed to be unconstrained. As far asphysical
agentssuch as robots or satellites are concerned, physical and cost constraints have a
major impact on communication and therefore on coordination. On the first hand an agent
cannot always communicate with another agent or the communications are restricted to
short time intervals; on the other hand an agent cannot always wait until the coordination
process terminates before acting. Such constraints are present in space applications.

Let us consider satellite constellations i.e. 3 to 16 satellites placed in low orbit
around the Earth to take pictures of the ground [4]. Observation requests are generated
asynchronously with various priorities by ground stationsor the satellites themselves. As
each satellite is equipped with a single observation instrument with use constraints, too
close requests cannot be realized by the same satellite. Likewise, each satellite is con-
strained in memory resources and can realize only a limited number of requests before
downloading, i.e. transferring the pictures taken to a ground station. Finally, the orbits of
the satellites cross around the poles: two (or more) satellites that meet in the polar areas
can communicatevia InterSatellite Links (ISL) without any ground intervention. So the
satellites can communicate from time to time.

1We would like to thank Marie-Claire Charmeau (CNES – The French Space Agency) and Serge
Rainjonneau (Thales Alenia Space) for their comments on this work.



Centralized planning [12,22] is not considered because (1)the aim of future space
applications is to avoid using ground stations as much as possible (operating a ground
station is expensive); (2) the asynchronous generation of new requests by each satellite
prevents us from having a centralized view of the problem andtherefore a centralized
resolution.

Consequently the problem we focus on is a decentralized taskallocation problem in
a multi-agent system with new tasks arriving asynchronously and intermittent commu-
nications. Each satellite (each agent) builds and revises atask plan such that the number
of tasks realized by the constellation is the highest possible, they are realized as soon
as possible, the number of redundancies is the lowest possible (cf. Definition 5) and the
number of high priority tasks that are not realized is the lowest possible. In order to ad-
dress this problem, we propose an online incremental dynamic organization mechanism
in three steps: (1) agents plan individually; (2) agents communicate in order to build a
common knowledge; (3) agents build and revise coalitions that influence their plans.

1. A multiagent system

1.1. Public knowledge of the agents

The constellation is a multi-agent system where each satellite is represented by an agent:

Definition 1 (Constellation) TheconstellationS is a triplet (A, T, Vicinity) with A =
{a1 . . . an} the set ofn agents representing then satellites,T ⊂ N+ a set of dates defin-
ing a common clock and Vicinity: A×T 7→ 2A a symmetric non transitive periodic rela-
tion specifying for a given agent and a given date the set of agents with which it can com-
municate at that date (acquaintance model). Vicinity represents the temporal windows
when the satellites meet; it is calculated from the satellite orbits, which are periodic.

Definition 2 (Periodicity) LetS be a constellation and{p1 . . . pn} the set of the orbital
cycle durationspi ∈ T of agentsai ∈ A. The Vicinity period̊p ∈ T is thelowest common
multipleof set{p1 . . . pn}.

Other agents, clock and Vicinity is knowledge that all the agents hold in common.

1.2. Private knowledge in terms of tasks and intentions

Each agent within the constellation knows sometasksto realize.

Definition 3 (Task) A taskt is an observation request associated with a priorityprio(t)
∈ N∗ and with a booleanbt that indicates whethert has been realized or not.

Notice that in the space domain,1 stands for the highest priority whereas5 is the
lowest. Consequently the lowerprio(t), the more important taskt. The tasks may be
constrained in two ways:

• mutual exclusion: it is an agent’s constraint meaning that it cannot realize several
tasks at the same timeτ ;



• compositionof n tasks: all then tasks must be realized, it is useless to realize
only a strict subset of them. Formally,

Definition 4 (Compound task) A compound taskis a subsetT of tasks such that
(∃ti ∈ T , ti is realized)⇒ (∀tj ∈ T , tj 6= ti must be realized).

Moreover when a task is realized by an agent, it is redundant if it has already been
realized by another agent:

Definition 5 (Redundancy) Letai be an agent that realizes a taskt at timeτ ∈ T. There
is a redundancyaboutt if and only if∃ aj ∈ A and∃ τ ′ ∈ T (τ ′ ≤ τ ) such thataj has
realizedt at timeτ ′.

Example 1 Let us suppose that an agenta1 realized a taskt at timeτ1. If an agenta2

realizes the same task later, i.e. takes the same picture of the ground at timeτ2 (τ1 < τ2),
there is a redundancy.

Let T τ
ai

be the set of all tasks known by an agentai at timeτ . Each agentai has
resources available to realize only a subset ofT τ

ai
. These resources are the mass memory

that allows to keep pictures in memory before downloading.

Each agent within the constellation knows someintentionsabout the tasks.

Definition 6 (Intention) Let Iai

t be theintentionof agentai towards taskt. Iai

t is a
modality of proposition (ai realizest) :

• 2 (commitment): ai is committed to realizet
• 3 (proposal): ai proposes to realizet
• 2¬ (strong withdrawal): ai will not realizet
• 3¬ (weak withdrawal): ai does not propose to realizet

A realization daterea(Iai

t ) ∈ T ∪ {Ø} and a download datetel(Iai

t ) ∈ T ∪ {Ø} are
associated with each intention.

Let Iτ
ai

= (Iak

t ) be the matrix of the intentions known by agentai at timeτ . More
precisely the set of an agent’s intentions corresponds to its current plan. We assume that
each agent has an individual planner. Planning is a three-step process. (1) From the set
of unrealized tasks known byai at timeτ , ai computes an optimal local plan under two
criteria2: maximization of the number of planned tasks and minimization of the number
of unplanned high priority tasks. (2) The intentions of agent ai about taskst at time
(τ − 1) constrain the planning process (1): tasks linked to a commitment (2) arealways
planned and tasks linked to a strong withdrawal (2¬) areneverplanned. (3) Agentai’s
plan at timeτ modifies its intentions as follows: each new planned task generates a
proposal (3) and each new unplanned task is set aside (3¬).

We can notice that the commitments (2) and strong withdrawals (2¬) are not gener-
ated by the planning process. We will see in Section 3 that these intentions are generated
by a collaboration process.

Finaly tasks and intentions an agent knows are captured by knowledge:

2The individual planning process itself is beyond the scope of our work.



Definition 7 (Knowledge) A piece of knowledgeKτ
ai

of agentai at timeτ is a triplet
< DKτ

ai
, AKτ

ai
, τKτ

ai
>:

• DKτ
ai

is a taskt or an intentionIak

t of ak aboutt, ak ∈ A;
• AKτ

ai
⊆ A is the subset of agents knowingKτ

ai
;

• τKτ
ai
∈ T is the date whenDKτ

ai
was created or updated;

LetKτ
ai

be the set of all pieces of knowledge of an agentai at timeτ .

2. Communication

Communication is based on Vicinity: when two agents meet they can communicate. Con-
sequently the Vicinity structure influences the communication capabilities. Two kinds of
communications are defined:

Definition 8 (Communication) LetS be a constellation andai, aj ∈ A:

• ai communicate directlywith aj iff ∃ τ within p̊ such thataj ∈ Vicinity(ai, τ);
• ai communicate indirectlywith aj iff ∃ {ak ∈ A, i ≤ k < j} and∃ {τkwithin p̊,

i ≤ k < j} such thatak+1 ∈ Vicinity(ak, τk).

In case of an indirect communication,ai andaj may communicate through several
agents forming adaisy chain. As Vicinity is symmetric but not transitive, direct com-
munication is symmetric whereas indirect communication isoriented from an agent to
another one. Each communication fromai to aj is associated with a couple(τi, τj) ∈ T2

with τi the emitting date ofai andτj the receipt date ofaj . We will write: ai communi-
cates withaj at (τi, τj). In case of a direct communication,τi = τj .

2.1. An epidemic protocol

The agents have to reason on a common knowledge in terms of tasks and intentions. A
epidemic protocol based on overhearing [11] has been proposed [2] to allow an agent
to know what the other agents know. The agents use every opportunity to communicate
information even if it does not concern themselves:

1. each agentai considers its own knowledge changes;

2. ai communicates the changes toaj ∈ Vicinity(ai, τ);

3. aj updates its own knowledge thanks to the timestampτKτ
ai

;

4. ai andaj update the set of agents knowing the knowledge.

This last step allows us to define a common knowledge notion. Formally,

Definition 9 (Common knowledge)At timeτ , agentai knows that agentaj knows the
intentionIai

t captured byKτ
ai

iff aj ∈ AKτ
ai

or ai communicated withaj at (τi, τj) such
thatτKτ

ai
≤ τi, τj ≤ τ .



2.2. Last confirmation date

As the environment is dynamic, an agent may receive new tasksor new intentions and
modify its plan, i.e. its own intentions, accordingly. Consequently an agent that receives
a given proposal at timeτ cannot be sure that this proposal will be the same at timeτ ′ (τ ′

> τ ). The more time between the generation of a given proposal and the realization date,
the less an agent can trust it. However as the agents communicate every knowledge mod-
ification, an agent that does not communicate changes about its own intention confirms
them implicity. In this sense we define formally the last confirmation date of a proposal:

Definition 10 (Last confirmation date) Let ai be an agent that knownIaj

t a proposal
of an agentaj about a taskt. Thelast confirmation dateof Iaj

t for ai at timeτ is:

τ∗ = max
τKτ

ai
<τj,τi<τ

{τj : aj communicates withai at(τj , τi)}

Example 2 Let a1, a2 and a3 be three agents. Suppose thata1 communicate directly
with a2 at τ1, a1 with a3 at τ2, anda3 with a2 at τ3 (τ1 < τ2 < τ3). At τ3, the last
confirmation date froma2’s point of view abouta1’s proposals isτ2.

2.3. Trust

Intuitively the trust associated with a proposal depends onthe time between its last con-
firmation date and its realization. The agents cannot predict the arrival of new tasks.
However as time passes, an agent meets other agents and each meeting is an opportunity
to receive new tasks and revise its intentions. Consequently an agent’s trust about a given
proposal is defined with respect to the number of meetings between the last confirmation
date and the realization date. This number is based on Vicinity therefore each agent can
compute its own trust in the others’ proposals.

Definition 11 (Meetings) Let ai be an agent,Iaj

t a proposal known byai and τ the
current date. Letτ∗ be the last confirmation date ofI

aj

t for ai at timeτ . The number of
agentsMai

τ∗(I
aj

t ) agentaj will meet betweenτ∗ andrea(I
aj

t ) is given by:

Mai

τ∗(I
aj

t ) = |
⋃

τ∗<τ ′<rea(I
aj
t )

Vicinity(aj , τ
′)|

Finally, the trust criterion is:

Definition 12 (Trust) Letai be an agent,Iaj

t a proposal known byai andτ the current
date. Agentai trustsagentaj aboutIaj

t if and only ifMai

τ∗(I
aj

t ) = 0.

Example 3 Let us resume Example 2. Atτ1, a1 anda2 meet.a2 will not trust a1’s pro-
posals that would be issued afterτ2 becausea1 will meeta3. At τ3, due to the last con-
firmation dateτ2, a2 will trust a1’s proposals that would be issued afterτ2.

We can notice that the trust criterion of Definition 12 is hard: an agent is not trusted
if it meets at least another agent before realizing its proposal (Mai

τ∗(Iak

t ) = 0). This
pessimistic assumption can be relaxed (e.g.Mai

τ∗(Iak

t ) ≤ 1).



3. Collaboration via coalitions

3.1. Coalitions

A coalition is an agent organization with a short life cycle.It is formed in order to real-
ize a given goal and is destroyed when the goal is achieved. Through a coalition, each
agent tries to maximize its personal outcome. In the literature, the methods dedicated to
coalition formation are based on the exploration of the lattice of the possible coalition
structures [10,15,16,19]. However, these methods are often centralized or they use an
auctioneer (or other kinds of hierarchy), assume that all tasks are known by all agents and
are performed off-line [1,5,7,18,17]. The decentralized approach has been investigated
by [9] but, in our application, agents cannot always exchange information and they may
have to decide alone. Moreover some tasks cannot wait for thecomplete computation of
the coalition structure and must be realized quickly.

Be that as it may, the coalition formation mechanisms are interesting for three rea-
sons: (1) agents gather in order to realize a collective task; (2) the short life cycle of coali-
tions is adapted to dynamic environments; (3) agents searchfor efficient solutions under
uncertain and (or) incomplete information. In our application, compound tasks require
that some agents should realize some subsets of tasks jointly. However these joint real-
izations cannot be planned by the agents’ individual planners as an agent does not plan
for the others. In order to dynamically organize the agents,we will consider a decentral-
ized coalition formation mechanism taking into account thefeatures of our problem, i.e.
cooperative agents and constrained communications. The mechanism is as follows:

1. Agents build maximal-size coalitions from their own knowledge;
2. Coalitions are refined as the agents meet to remove uselessagents.

Coalitions are defined as follows:

Definition 13 (Coalition) A coalitionC is a triplet< A, O, P > :

• A ⊆ A is a subset of agents that are themembersof the coalition;
• O is the set of tasks that are thegoalsof the coalition, i.e. that must be realized

by the coalition;
• P is the set of tasks that are in thepowerof the coalition, i.e. that are intended to

be realized by the coalition.

A coalitionC can be in different states:

• C is completeiff O ⊆ P ;
• C is minimal iff C is complete andA is minimal for inclusion (⊆).

Coalitions are build and managed locally by each agent, given the knowledge it has
about the other agents through communication. Indeed each agent uses the coalition no-
tion to reason and adapt its own intentions to the others’ intentions. Therefore, coalitions
are formed implicitly through intentions but are not explicitly built by the multi-agent
system. Each agent:

i . computes the current coalition structure from its point of view;
ii . checks whether it should join a coalition to increase itspower;
iii . checks whether it can withdraw from a coalition to minimize it ;
iv . modifies its intentions accordingly.



3.2. Computation of the coalition structure

Each agentai generates the current coalition structure as follows:

1. ai organizes the set of tasksT τ
ai

as a partition{T1 . . . Th} according to the com-
pound tasks;

Example 4 LetT τ
ai

be{t1, t2, t3, t4, t5}. Let us suppose that taskst1 andt2 form
a compound task as well ast4 and t5. ThenT τ

ai
is organized as{{t1, t2}, {t3},

{t4, t5}}.

2. eachTi is the goal of a single potential coalition; as subsetsTi are disjoint3, the
number of potential coalitions generated by agentai is given by the number of
compound tasksai knows;

3. from agentai’s point of view, the potential coalition members for subsetTi are
defined as:{ak ∈ A : ∃ t ∈ Ti / ∃ Iak

t ∈ K
τ
ai

such thatIak

t ∈ {2, 3}}

Example 5 Let us resume Example 4. Let us considert3 and suppose thatIai

t3
= 3

andIak

t3
= 2. ai can build coalitionC = < {ai, ak}, {t3}, {t3} >. This coalition

is complete but not minimal because{ai, ak} is not minimal for inclusion. Notice
thatai planst3 even if it knows thatak did the same. Indeed, the others’ intentions
are not taken into account in the planning step: they are taken into account in the
collaboration steps (ii., iii., iv.).

4. then the power of each potential coalitionC with goalTi is defined as:P = {t ∈
O|∃ai ∈ A : Iai

t ∈ {2, 3}}

Let us notice that this framework defines the current coalition structure from the
agent’s point of view. Each potential coalition may be minimal (thus complete), complete
and not minimal or incomplete. Consequently we define two mecanisms to enrich and
refine the power of a coalition.

3.3. An incentive to join coalitions

An incomplete coalition means that at least one goal task is not within the coalition
power. But the more tasks within the coalition power, the more important goal tasks be-
come because a coalition must realize all its goal tasks. If the coalition remains incom-
plete, all its members waste their resources.

When agentai computes the current coalition structure according to its knowledge,
it can detect incomplete coalitions. Asai is cooperative, it should be incited to modify its
intentions and complete these coalitions when planning. Inorder to do that, we propose
to increase the priorities of the goal tasks of the incomplete coalitions. In the remainder,
we will noteprio(t)′ the priority of taskt ai uses for its next planning step. Notice that
prio(t)′ is a local priority only used byai. The initial priorityprio(t) of taskt remains
the same.

Protocol 1 (Join a coalition) For each incomplete coalitionC = < A, O, P >, agent
ai computes:∀ t ∈ O, prio(t)′ ← prio(t)

1+|P | .

3The compound tasks are assumed disjoint but they can overlapwithout modifying the process.



The agent is encouraged to join a coalition if and only if the goal of the coalition is
to realize a compound task that is partially planned. This mechanism isstable, i.e. two
successive incentive steps are consistent. For instance, an agent is not encouraged to give
up a given task in order to realize another one, thenceteris paribusis not encouraged to
give up the latter to realize the former.

Example 6 Let us resume Example 4. Let us consider{t1, t2} and suppose that
Iai

t1
= 3¬, Iai

t2
= 3¬, Iak

t1
= 3¬ and Iak

t2
= 2. ai can build coalitionC = <

{ak}, {t1, t2}, {t2} >. This coalition is incomplete. Soai applies Protocol 1. Asak is
already a member of the coalition, the priorities oft1 andt2 are halved forai. Therefore
at its next planning step,ai is more likely to plant1 or t2 instead of other tasks.

3.4. Minimizing coalitions

A complete and non minimal coalition has the power to realizeits goals with useless
agents, i.e. agents that have redundant intentions. Withina coalition, an agent has to
consider the agents that have planned the same tasks as it has, then to make a decision
about modifying or not its own intentions. There is a conflictbetween two agents within
a coalition if they have planned the same task(s). Formally:

Definition 14 (Conflict) Let ai, aj be two agents andC a coalition< A, O, P > such
that {ai, aj} ⊆ A. There is aconflict betweenai and aj iff ∃ t ∈ P such thatIai

t ∈
{2, 3} and I

aj

t ∈ {2, 3}. It is a soft conflict iff either ai communicates withaj at
(τi, τj) such thatτI

ai
t

< τi and τj < min(rea(Iai

t ), rea(I
aj

t )) or aj knows agentai’s
intention aboutt. Else it is ahard conflict.

A soft conflict means that involved agents have (or may have) acommon knowledge
of it. Consequently they can coordinate. A hard conflict means that only one agent is
aware (and will be aware) of it because there is no common knowledge. In the remainder,
given an agentai and a taskt, we denoteA∗ the set of agents with which it is in conflict
about taskt, A+ ⊆ A∗ the set of agents in soft conflict andA− ⊆ A∗ the set of agents
in hard conflict.

Example 7 Let us resume Example 5. The coalition is not minimal: there is a conflict
about taskt3 between agentsai andak. Soai has to make a decision in order to withdraw
(2¬), to keep its intention (3) or to commit (2).

As we are seeking to optimize the system swiftness, it is better that the agents real-
ize the tasks as soon as possible and use the fewest resourcespossible. This is meaning
keeping the pictures in the satellite memory for the shortest time possible, i.e. download-
ing them as soon as possible. Let us aggregate both criteria in a single expertise criterion.
Formally:

Definition 15 (Expertise) Let A∗ ⊆ A be a set of agents in conflict about a taskt. Let
us noterea∗ = min

ai∈A∗

rea(Iai

t ) the earliest realization date for taskt. Theexpertagent

for t is defined thanks to the following distance (see Figure 1):

a∗ = arg min
ai∈A∗

||(rea(Iai

t )− rea∗, tel(Iai

t )− rea∗)||
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Figure 1. This figure is a representation of the expertise criterion for a taskt in the plan(rea(I
ai
t

), tel(Iai
t

)),
ai ∈ A∗. The originrea∗ is the earliest realization date fort and intention(rea∗, rea∗) is the ideal intention
corresponding to an agent being able to realizet at timerea∗ and download the corresponding picture imme-
diately. tel∗ is the latest download date fort, if t is realized at timerea∗. Obviouslytel(Iai

t
) > rea(Iai

t
)

therefore only the hatched part is meaningful.

The distance between a potential intention and an ideal intention (the earliest real-
ization and download date) represents time criteria. The expert agent fort is the one that
minimizes this distance.

Both soft and hard conflicts are dealt with through protocolsbased three strategies:

1. an insurance strategy whereai maintains its proposal (3) if it does not trust the
other agents therefore maintaining redundancies to make sure that the task will be
realized.

2. a competitive strategy whereai commits (2) if it is the expert agent therefore
deciding on a part of the current coalition structure.

3. a opportunist strategy whereai strongly withdraws (2¬) if the expert agent is
trusted thus minimizing the size of the coalition.

Protocol 2 (Hard conflict) LetA∗ be the set of the coalition members with which agent
ai is in conflict about taskt such thatA− 6= ∅. ai is aware of the conflict and applies:

1. if min
ak∈A−

Mai

τ∗(I
ak

t ) > 0 thenIai

t ← 3

2. elseIai

t ← 2¬

In case of a hard conflict, the agent who is aware of the conflict(1) maintains its
proposal if it does not trust the agents within the conflict ; else (2) withdraws.

Protocol 3 (Soft conflict) Let A∗ be the set of the coalition members with which agent
ai is in conflict about taskt such thatA+ 6= ∅. Letrea∗ be min

ai∈A+
rea(Iai

t ):

1. if ai = arg min
ai∈A+

||(rea(Iai

t )− rea∗, tel(Iai

t )− rea∗)|| thenIai

t ← 2

2. else leta∗ be the expert agent:
(a) if Mai

τ∗(Ia∗

t ) > 0 thenIai

t ← 3

(b) elseIai

t ← 2¬

For soft conflicts, each agent computes the expert agent. (1)If it is the expert agent,
it commits. (2.a) If not, it maintains its proposal if it doesnot trust the expert. (2.b) If it
trusts the expert, it withdraws.



4. Simulations and results

Simulations have been conducted on three kinds of constellations: (1) isolated constel-
lationswith no communication; (2)informed constellationswhere agents communicate
only about tasks and coordinatea posterioriby withdrawing already realized tasks from
their plans; (3)coordinated constellationswhere agents communicate about tasks and
intentions and coordinatea priori thanks to coalition formation.

4.1. Performance
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Figure 2. Tasks
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Figure 3. Tasks with no redundancy

The first simulation round is based on a dynamic scenario with3 agents. Every6th
hour, the ground stations send40 new compound tasks (including at least2 atomic tasks)
to the agents. Two metrics are considered: the number of realized tasks (Figure 2) and
the number of realized tasks without redundancy (Figure 3).

Informed and coordinated constellations outperform isolated ones. However we can
notice that the benefits increase as time passes. Indeed incremental coordination allows
coordinated constellations to realize more tasks than the other kinds of constellations.
And as time passes the difference between informed and coordinated constellations in-
creases: incremental coordination allows coordinated constellations to efficiently save
and reallocate resources.

4.2. Scalability

In order to experiment the scalability of our system, we haveconsidered a scenario with
500 atomic tasks and Walker satellite constellations [21] of different sizes (1, 4, 6, 8, 9, 12
and16 satellites dispatched regulary on a finite number of orbitalplans). The agents must
realize all the tasks and the constellation swiftness and efficiency are then compared.

Definition 16 (Performance) Let Tn the time ofn agents to realize all the tasks,K the
set of realized observations (i.e. the realized tasks and their redundancies) andR the
set of realized tasks. The constellationswiftnessis given by T1

Tn
and the constellation

efficiencyis given by|R|
|K| .
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Figure 4. Swiftness
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Figure 5. Efficiency

We can notice on Figure 4 that the swift-
ness of isolated constellations is approxi-
mated by a logarithmic function whereas
the swiftness of informed and coordinated
constellation are not regular. This is due to
the heterogeneous structure of the satellite
interactions. Indeed isolated satellites have
no interactions but, for informed and co-
ordinated constellations, interactions exist
only between satellites belonging to differ-
ent orbital plans (see Figure 6). Figure 6. Different orbital plans

Consequently2 satellites situated on4 plans can have more interactions than4 satel-
lites situated on3 plans: the topology of the interactions matters. More precisely the
number of satellites is not the major parameter but their orbits: few satellites may com-
municate often whereas many satellites may only communicate from time to time. This
phenomenon can be observed between the8- and12-satellite constellations. We can no-
tice on Figure 5 that coordinated constellations are in average5% more efficient than
informed constellations. They are also19% more efficient than isolated constellations.
The constellations are scalable according to Turner [20]: asystem is scalable if the re-
source consumption can be bounded by a polynomial function.In our application, the
number of realized observations divided by the number of realized tasks|K|

|R| represents
the resource overconsumption: it is the inverse of efficiency.

5. Conclusion

We have proposed a collaboration method for physical agentsthat communicate from
time to time in a dynamic environment. This method has been applied to a constella-
tion of satellites. A communication protocol has been proposed in order to build com-
mon knowledge (in terms of tasks and intentions) as the agents meet. The collaboration
process is an online incremental coalition formation that proceeds through aplanning -
communication - collaborationloop within each agent. Each agent builds an initial plan;



from its knowledge, it builds the potential coalitions thatcan realize the tasks it knows;
afterwards these coalitions are refined thanks both to anincentivemechanism and an
optimizationmechanism. The agents’ communication capabilities and theconflict def-
initions allow us to define protocols that refine the coalition structure dynamically and
adapt it to new knowledge. The experimental results show that the coalition formation
mechanism allows the resource consumption to be minimized;then the saved resources
are reallocated in a incremental way and the number of realized tasks is increased. Future
work will deal with the possible failures of the agents (communication or coordination).

References

[1] S. Abdallah and V. Lesser, Organization-based cooperative coalition formation, InProceedings of the
IEEE IAT(2004).

[2] G. Bonnet and C. Tessier, Collaboration among a satellite swarm, InProceedings of the 6th AAMAS
(2007), 287–294.

[3] C.H. Brooks and E.H. Durfee, Congregation formation in multiagent systems,JAAMAS7 (2003), 145–
170.

[4] S. Damiani, G. Verfaillie, and M.-C. Charmeau, An Earth watching satellite constellation: How to man-
age a team of watching agents with limited communications, In Proceedings of the 4th AAMAS(2005),
455–462.

[5] A.R.V. Dung Dang, R.K. Dash, and N.R. Jennings, Overlapping coalition formation for efficient data
fusion in multi-sensor networks, InProceedings of the 21st AAAI(2006), 635–640.

[6] F. Dignum, Autonomous agents with norms,Artificial Intelligence and Law7 (1999), 69–79.
[7] H. Goradia and J. Vidal, An equal excess negotiation algorithm for coalition formation, InProceedings

of the 6th AAMAS(2007), 1052–1054.
[8] B. Horling and V. Lesser, A survey of multi-agent organizational paradigms,The Knowledge Engineer-

ing Review, 19 (2004), 281–316.
[9] M. Krainin, B. An and V. Lesser, An Application of Automated Negotiation to Distributed Task Alloca-

tion, In Proceedings of the IEEE IAT(2007), 138–145.
[10] S. Kraus, O. Shehory, and G. Taase, Coalition formationwith uncertain heterogeneous information, In

Proceedings of the 2nd AAMAS(2003).
[11] F. Legras and C. Tessier, LOTTO: group formation by overhearing in large teams, InProceedings of 2nd

AAMAS(2003).
[12] J.B. Mueller, D.M. Surka and B. Udrea, Agent-based control of multiple satellite formation flying, In

Proceedings of the 6th ISAIRAS(2001).
[13] B. Pittel, On spreading a rumor,SIAM Journal of Applied Mathematics, 47 (1987), 213–223.
[14] T. Sandholm, Contract types for satisficing task allocation, In Proceedings of the AAAI Spring Sympo-

sium: Satisficing Models(1998), 23–25.
[15] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F.Tohmé, Coalition structure generation with

worst case guarantees,Artificial Intelligence111(1-2)(1999), 209–238.
[16] I.G.S. Sen and S. Airiau, Expertise and trust-based formation of effective coalitions: an evalutation on

the ART testbed, InProceedings of the ALAMAS workshop at the 5th AAMAS(2006).
[17] O. Shehory and S. Kraus, Feasible formation of coalitions among autonomous agents in non-super-

additive environments,Computational Intelligence15(3)(1999), 218–251.
[18] M. Sims, C.V. Goldman, and V. Lesser, Self-organization through bottom-up coalition formation, In

Proceedings of the 2nd AAMAS(2003).
[19] B Thanh-Tung, B. Frankovic, C. Sheahan, and I. Bundiska, Using agent coalitions for improving plan

quality, Intelligent Systems at the Service of Mankind2 (2005), 351–364.
[20] P.J. Turner and N.R. Jennings, Improving the scalability of multi-agent systems, InProceedings of the

Workshop on Infrastructure for Scalable Multi-Agent Systems(2000).
[21] L. Wood, Internetworking and computing over satellitenetworks, InKluwer Press(2003).
[22] P. Zetocha, Satellite cluster command and control,IEEE Aerospace Conference7 (2000), 49–54.


